Future Information Technologies: Germanium telluride's hidden properties at the nanoscale revealed

The Fermi surface of multidomain GeTe (111) bulk single crystal measured with high-resolution angle-resolved photoemission at BESSY II.

The Fermi surface of multidomain GeTe (111) bulk single crystal measured with high-resolution angle-resolved photoemission at BESSY II. © HZB

Germanium Telluride is an interesting candidate material for spintronic devices. In a comprehensive study at BESSY II, a Helmholtz-RSF Joint Research Group has now revealed how the spin texture switches by ferroelectric polarization within individual nanodomains.

Germanium telluride (GeTe) is known as a ferrolectric Rashba semiconductor with a number of interesting properties. The crystals consist of nanodomains, whose ferrolectric polarization can be switched by external electric fields. Because of the so-called Rashba effect, this ferroelectricity can also be used to switch electron spins within each domain. Germanium telluride is therefore an interesting material for spintronic devices, which allow data processing with significantly less energy input.

Russian German Cooperation

Now a team from HZB and the Lomonosov Moscow State University, which has established a Helmholtz-RSF Joint Research Group, has provided comprehensive insights into this material at the nanoscale. The group is headed by physical chemist Dr. Lada Yashina (Lomonosov State University) and HZB physicist Dr. Jaime Sánchez-Barriga. "We have examined the material using a variety of state-of-the-art methods to not only determine its atomic structure, but also the internal correlation between its atomic and electronic structure at the nanoscale," says Lada Yashina, who produced the high-quality crystalline samples in her laboratory.

Nanodomains observed in detail

Their microscopy investigations showed that the crystals possess two distinct types of boundaries surrounding ferroelectric nanodomains with sizes between 10 to 100 nanometres. At BESSY II, the team was able to observe two surface terminations with opposite ferroelectric polarization, and to analyse how these terminations correspond to nanodomains with either Ge or Te atoms at the topmost surface layer.

Ferroelectric polarization and spin texture

"At BESSY II, we were able to precisely analyze the intrincate relationship between the spin polarization in the bulk or at the surface and the opposite configurations of the ferroelectric polarization”, explains Jaime Sánchez-Barriga. The scientists also determined how the spin texture switches by ferroelectric polarization within individual nanodomains. "Our results are important for potential applications of ferroelectric Rashba semiconductors in non-volatile spintronic devices with extended memory and computing capabilities at the nanoscale," emphasizes Sánchez-Barriga.

arö

You might also be interested in

  • Rhombohedral graphite as a model for quantum magnetism
    Science Highlight
    27.09.2022
    Rhombohedral graphite as a model for quantum magnetism
    Graphene is an extremely exciting material. Now a graphene variant shows another talent: rhombohedral graphite made of several layers slightly offset from each other could enlighten the hidden physics in quantum magnets.
  • 40 years of research with synchrotron light in Berlin
    News
    14.09.2022
    40 years of research with synchrotron light in Berlin
    Press release _ Berlin, 14 September: For decades, science in Berlin has been an important driver of innovation and progress. Creative, talented people from all over the world come together here and develop new ideas from which we all benefit as a society. Many discoveries – from fundamental insights to marketable products – are made by doing research with synchrotron light. Researchers have had access to this intense light in Berlin for 40 years. It inspires many scientific disciplines and is an advantage for Germany.

  • New road towards spin-polarised currents
    Science Highlight
    08.09.2022
    New road towards spin-polarised currents
    The transition metal dichalcogenide (TMD) series are a family of promising candidate materials for spintronics. A study at lightsource BESSY II has unveiled that in one of those materials even simple linear polarised light is sufficient to selectively manipulate spins of different orientations. This result provides an entirely new route for the generation of spin-polarised currents and is a milestone for the development of spintronic and opto-spintronic devices.