Green hydrogen: buoyancy-driven convection in the electrolyte

The distribution of local pH change (&Delta;pH) with time in an electrolyte containing 0.5 M K<sub>2</sub>SO<sub>4.</sub>

The distribution of local pH change (ΔpH) with time in an electrolyte containing 0.5 M K2SO4. © HZB

Hydrogen produced by using solar energy could contribute to a climate neutral energy system of the future. But there are hurdles on the way from laboratory scale to large-scale implementation. A team at HZB has now presented a method to visualise convection in the electrolyte and to reliably simulate it in advance with a multiphysics model. The results can support the design and scaling up of this technology and have been published in the renowned journal Energy and Environmental Science.

Hydrogen can be produced with renewable energies in a climate neutral way and could make a major contribution to the energy system of the future. One of the options is to use sunlight for electrolytic water splitting, either indirectly by coupling a solar cell with an electrolyser or directly in a photoelectrochemical (PEC) cell. Light-absorbing semiconductors serve as photoelectrodes. They are immersed in an electrolyte solution of water mixed with strong acids or bases, which contains high concentration of protons or hydroxide ions necessary for efficient electrolysis.

Safety versus efficiency

However, in a large-scale plant, it would make sense for safety reasons to use an electrolyte solution with a near-neutral pH. Such a solution has a low concentration of protons and hydroxide ions, which leads to mass-transport limitations and poor performance. Understanding these limitations is essential to design a safe and scalable PEC water splitting device.

Convection observed

A team led by Dr. Fatwa Abdi from the HZB Institute for Solar Fuels has now for the first time investigated how the liquid electrolyte throughout the cell behaves during electrolysis: With the help of fluorescent pH-sensor foils, Dr. Keisuke Obata, a postdoc in Abdi’s team, determined the local pH value in PEC cells between the anode and cathode during the course of electrolysis. The PEC cells were filled with near-neutral pH electrolytes. The scientists experimentally visualized the decrease of pH at regions close to the anode and the increase of pH at regions close to the cathode. Interestingly, they observed a clock-wise motion of the electrolyte as the electrolysis proceeds. The observation can be explained by buoyancy due to changes of electrolyte density during the electrochemical reaction which leads to convection. "It was surprising to see that tiny changes in electrolyte density (~0.1%) cause this buoyancy effect," says Abdi.

Model allows simulation

In parallel, Abdi and his team developed a multiphysics model to calculate the convection induced by electrochemical reactions. "We have thoroughly tested this model and can provide now a powerful tool to simulate natural convection in an electrochemical cell with various electrolytes in advance," says Abdi.

HEMF and UniSysCat

For the project Abdi has built up a "Solar Fuel Devices Facility" at HZB, which is part of the Helmholtz Energy Materials Foundry (HEMF), a big infrastructure open to other scientists as well. This study was also performed in collaboration with TU Berlin, within the framework of UniSysCat cluster of excellence.

"With this work we are expanding our materials science expertise with efforts on photoelectrochemical reactor engineering, which is an essential next step for the scale-up of solar fuel devices" says Prof. Dr. Roel van de Krol, who heads the HZB Institute for Solar Fuels.

 

Energy & Environmental Science (2020)

In-situ Observation of pH Change during Water Splitting in Neutral pH Conditions: Impact of Natural Convection Driven by Buoyancy Effects

Keisuke Obata, Roel van de Krol, Michael Schwarze, Reinhard Schomäcker, and Fatwa F. Abdi

DOI: 10.1039/D0EE01760D

arö

  • Copy link

You might also be interested in

  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Berlin Science Award goes to Philipp Adelhelm
    News
    24.07.2025
    Berlin Science Award goes to Philipp Adelhelm
    Battery researcher Prof. Dr. Philipp Adelhelm has been awarded the 2024 Berlin Science Award. He is a professor at the Institute of Chemistry at Humboldt University in Berlin (HU) and heads a joint research group at HU and the Helmholtz Zentrum Berlin (HZB). The materials scientist and electrochemist is investigating sustainable batteries, which play a key role in the success of the energy transition. He is one of the leading international experts in the field of sodium-ion batteries.
  • Long-term test shows: Efficiency of perovskite cells varies with the season
    Science Highlight
    21.07.2025
    Long-term test shows: Efficiency of perovskite cells varies with the season
    Scientists at HZB run a long-term experiment on the roof of a building at the Adlershof campus. They expose a wide variety of solar cells to the weather conditions, recording their performance over a period of years. These include perovskite solar cells, a new photovoltaic material offering high efficiency and low manufacturing costs. Dr Carolin Ulbrich and Dr Mark Khenkin evaluated four years of data and presented their findings in Advanced Energy Materials. This is the longest series of measurements on perovskite cells in outdoor use to date. The scientists found that standard perovskite solar cells perform very well during the summer months, even over several years, but decline in efficiency during the darker months.