HZB and Humboldt University agree to set up a catalysis laboratory

Part of the IRIS research labs will be equipped for research on catalysts. Photo

Part of the IRIS research labs will be equipped for research on catalysts. Photo © Jan Zappner

With approx. 4,500 square metres of laboratory, office and communication space, the IRIS research building offers optimal conditions for the research and development of complex material systems.

With approx. 4,500 square metres of laboratory, office and communication space, the IRIS research building offers optimal conditions for the research and development of complex material systems. © IRIS Adlershof

Helmholtz-Zentrum Berlin (HZB) and Humboldt-Universität zu Berlin (HU) have signed a cooperation agreement with the aim of establishing a joint research laboratory for catalysis in the IRIS research building of HU in Adlershof. The IRIS research building offers optimal conditions for the research and development of complex material systems.

Catalysts are the key to many technologies and processes needed to build a climate-neutral economy. A hotspot for catalysis research has been developing in Berlin's research landscape for some time. As part of the Excellence Initiative, new clusters such as UniSysCat have been created in which established research institutes bundle their activities and the chemical industry is involved through the BASCat laboratory. An important field of research is the production of "green" hydrogen: in order to produce hydrogen and synthetic fuels in a climate-neutral way using renewable energies, innovative catalysts are needed. The recently launched CatLab project, which is funded as part of the Hydrogen Strategy, is pursuing completely new approaches based on thin-film technologies that promise real leaps in innovation.

IRIS laboratories equipped for catalysis research

To further promote catalysis research in Berlin, Humboldt-Universität zu Berlin and HZB have now signed another cooperation agreement. Part of the IRIS laboratories in Berlin-Adlershof will be additionally equipped for the development and investigation of heterogeneous catalyst systems. IRIS Adlershof stands for Integrative Research Institute for the Sciences. With approximately 4,500 square metres of state-of-the-art laboratory, office and communication space, the IRIS research building offers optimal conditions for the research and development of complex material systems. Close cooperation is also planned in the field of thin-film technology, using additive manufacturing processes and nanostructuring and synthesis methods.

Innovations through interdisciplinary cooperation

In the IRIS research building, experts from different disciplines work closely together for a deep physical-chemical understanding of complex interfaces. This forms an excellent basis for the development of energy materials. The arrangement of the laboratories and offices as well as the spacious communication areas create the best conditions for the different disciplines to exchange ideas and learn from each other.

Cooperation agreement is also legally innovative

The cooperation between the HU and the HZB on the catalysis research laboratory is being structured on a public-law basis for the first time due to the recent amendment to the Berlin Higher Education Act on cooperation between scientific institutions. The procedure for recording, evaluating and documenting mutual cooperation contributions is simpler and less bureaucratic. This allows researchers to concentrate on their core task – doing science.

red.


You might also be interested in

  • Dynamic measurements in liquids now possible in the laboratory
    Science Highlight
    23.05.2024
    Dynamic measurements in liquids now possible in the laboratory
    A team of researchers in Berlin has developed a laboratory spectrometer for analysing chemical processes in solution - with a time resolution of 500 ps. This is of interest not only for the study of molecular processes in biology, but also for the development of new catalyst materials. Until now, however, this usually required synchrotron radiation, which is only available at large, modern X-ray sources such as BESSY II. The process now works on a laboratory scale using a plasma light source.
  • Key role of nickel ions in the Simons process discovered
    Science Highlight
    21.05.2024
    Key role of nickel ions in the Simons process discovered
    Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.