Solarer Wasserstoff: Photoanoden aus α-SnWO4 versprechen hohe Wirkungsgrade

TEM-Aufnahme einer &alpha;-SnWO<sub>4 </sub>D&uuml;nnschicht (pink), die mit 20 nm NiO<sub>x</sub> (gr&uuml;n) beschichtet wurde. An der Grenzfl&auml;che bildet sich eine weitere extrem d&uuml;nne Schicht.

TEM-Aufnahme einer α-SnWO4 Dünnschicht (pink), die mit 20 nm NiOx (grün) beschichtet wurde. An der Grenzfläche bildet sich eine weitere extrem dünne Schicht. © HZB

Photoanoden aus Metalloxiden gelten als praktikable Lösung für die Erzeugung von Wasserstoff mit Sonnenlicht. So besitzt α-SnWO4 optimale elektronische Eigenschaften für die photoelektrochemische Wasserspaltung, korrodiert jedoch rasch. Schutzschichten aus Nickeloxid können die Korrosion verhindern, reduzieren jedoch die Photospannung und damit den Wirkungsgrad. Nun hat ein Team am HZB an der Synchrotronquelle BESSY II untersucht, was an der Grenzfläche zwischen der Photoanode und der Schutzschicht genau passiert. Kombiniert mit theoretischen Methoden deuten die Messdaten darauf hin, dass sich dort eine Oxidschicht bildet, die den Wirkungsgrad der Photoanode beeinträchtigt.

Wasserstoff ist ein wichtiger Faktor in einem nachhaltigen Energiesystem. Das Gas speichert Energie in chemischer Form und kann auf vielfältige Weise genutzt werden: als Kraftstoff, als Ausgangsstoff für andere Brennstoffe und Chemikalien oder auch zur Stromerzeugung in Brennstoffzellen. Wasserstoff lässt sich klimaneutral  durch die elektrochemische Spaltung von Wasser mit Sonnenlicht erzeugen. Die nötige Photospannung und Photostrom liefern geeignete Photoelektroden unter Lichteinfall, die im Wasser stabil bleiben. Einige Metalloxidverbindungen erfüllen diese Vorraussetzungen. So erreichen solare Wasserspalter mit Wismut-Vanadat (BiVO4)-Photoelektroden bereits heute Wirkungsgrade (Solar-to-Hydrogen) von etwa 8 % , was nahe am theoretischen Maximum des Materials liegt (9 %). Um Wirkungsgrade jenseits der 9 % zu erreichen, werden neue Materialien mit einer kleineren Bandlücke benötigt.

α-SnWO4 : Theoretisch bis 20 % Wirkungsgrad möglich

Das Metalloxid α-SnWO4 hat eine Bandlücke von 1,9 eV, die sich perfekt für die photoelektrochemische Wasserspaltung eignet. Theoretisch könnte eine Photoanode aus diesem Material um die 20 % des eingestrahlten Sonnenlichts in chemische Energie, gespeichert in Form von Wasserstoff, umwandeln. Leider zersetzt sich die Verbindung in wässriger Umgebung sehr schnell.

Schutzschicht reduziert die Photospannung

Dünne Schichten aus Nickeloxid (NiOx) können die α-SnWO4-Photoanode vor Korrosion schützen. Dabei wurde jedoch auch festgestellt, dass sie die Photospannung deutlich reduzieren. Um zu verstehen, warum dies der Fall ist, hat ein Team um Dr. Fatwa Abdi am HZB-Institut für Solare Brennstoffe die α-SnWO4/NiOx-Grenzfläche an BESSY II im Detail analysiert.

HAXPES-Messung an BESSY II

"Wir haben Proben mit unterschiedlichen NiOx-Dicken mit harter Röntgen-Photoelektronenspektroskopie (HAXPES) an BESSY II untersucht und die Messdaten mit Ergebnissen aus Berechnungen und Simulationen interpretiert", sagt Patrick Schnell, Erstautor der Studie und Doktorand in der HI-SCORE International Research School am HZB. "Diese Ergebnisse deuten darauf hin, dass sich an der Grenzfläche eine dünne Oxidschicht bildet, die die Photospannung reduziert", erklärt Dr. Fatwa Abdi.

Ausblick: Schutzschicht ohne Nachteile

Insgesamt liefert die Studie grundlegende neue Erkenntnisse über die komplexe Natur von Grenzflächen in Metalloxid-basierten Photoelektroden. "Diese Einblicke sind sehr hilfreich für die Entwicklung kostengünstiger, skalierbarer Metalloxid-Photoelektroden", sagt Abdi. α-SnWO4 ist in dieser Hinsicht besonders vielversprechend. "Wir arbeiten derzeit an einem alternativen Abscheidungsprozess für NiOx auf α-SnWO4, der nicht zur Bildung einer Grenzflächenoxidschicht führt. Wenn dies gelingt, erwarten wir, dass sich die photoelektrochemische Leistung von α-SnWO4 deutlich erhöhen wird."

arö

Das könnte Sie auch interessieren

  • Shutdown bei BESSY II: Neue Versorgungstechnik sichert langfristig den Betrieb
    Nachricht
    20.05.2022
    Shutdown bei BESSY II: Neue Versorgungstechnik sichert langfristig den Betrieb
    Die Röntgenquelle BESSY II befindet sich in einem dreimonatigen Shutdown. In dieser Zeit wird die Niederspannungshauptverteilung im Versorgungsgebäude außerhalb des Elektronenspeicherrings erneuert. Dies sichert den langfristigen stabilen Betrieb von BESSY II über das nächste Jahrzehnt hinaus.

  • Wärmedämmung für Quantentechnologien
    Science Highlight
    19.05.2022
    Wärmedämmung für Quantentechnologien
    Neue energieeffiziente IT-Bauelemente arbeiten häufig nur bei extrem tiefen Temperaturen stabil. Daher kommt es entscheidend auf eine sehr gute Wärmeisolierung solcher Elemente an, was die Entwicklung von Materialien mit extrem niedriger Wärmeleitfähigkeit erfordert. Ein Team am HZB hat nun mit einem neuartigen Sinterverfahren nanoporöse Silizium-Aluminium-Proben hergestellt, in welchen Poren und Nanokristallite den Transport von Wärme behindern und so die Wärmeleitfähigkeit drastisch reduzieren. Die Forschenden haben ein Modell für die Vorhersage der Wärmeleitfähigkeit entwickelt, das anhand von Messdaten zur Mikrostruktur der Proben und deren Wärmeleitfähigkeit bestätigt wurde. Damit liegt erstmals eine Methode für die gezielte Entwicklung von komplexen porösen Materialien mit ultraniedriger Wärmeleitfähigkeit vor.
  • Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Science Highlight
    17.05.2022
    Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Magnetische Nanostrukturen sind vielversprechende Werkzeuge für medizinische Anwendungen. Eingebaut in biologische Vehikel, lassen sich diese dann durch externe Magnetfelder an ihren Einsatzort im Körper steuern, wo sie Medikamente freisetzen oder Krebszellen zerstören können. Dazu ist jedoch die genaue Kenntnis der magnetischen Eigenschaften solcher Nanoteilchen nötig. Bisher konnten solche Informationen nur gemittelt über tausende Nanopartikel gewonnen werden. Nun hat ein Team am HZB eine Methode entwickelt, um die charakteristischen Parameter jedes einzelnen magnetischen Nanopartikels zu bestimmen.