Instrument at BESSY II shows how light activates MoS2 layers to become catalysts

</p> <p>A new instrument at BESSY II can be used to study molybdenum-sulfide thin films that are of interest as catalysts for solar hydrogen production. A light pulse triggers a phase transition from the semiconducting to the metallic phase and thus enhances the catalytic activity.</p> <p>

A new instrument at BESSY II can be used to study molybdenum-sulfide thin films that are of interest as catalysts for solar hydrogen production. A light pulse triggers a phase transition from the semiconducting to the metallic phase and thus enhances the catalytic activity.

© Martin Künsting /HZB

Thin films of molybdenum and sulfur belong to a class of materials that can be considered for use as photocatalysts. Inexpensive catalysts such as these are needed to produce hydrogen as a fuel using solar energy. However, they are still not very efficient as catalysts. A new instrument at the Helmholtz-Berlin Zentrum’s BESSY II now shows how a light pulse alters the surface properties of the thin film and activates the material as a catalyst.

MoS2 thin films of superposed alternating layers of molybdenum and sulfur atoms form a two-dimensional semiconducting surface. However, even a surprisingly low-intensity blue light pulse is enough to alter the properties of the surface and make it metallic. This has now been demonstrated by a team at BESSY II.

Enhanced catalytic activity in the metallic phase

The exciting thing is that the MoS2 layers in this metallic phase are also particularly active catalytically. They can then be employed, for example, as catalysts for splitting of water into hydrogen and oxygen. As inexpensive catalysts, they could facilitate the production of hydrogen – an energy carrier whose combustion produces no CO2, only water.

New at BESSY II: SurfaceDynamics@FemtoSpeX

Physicist Dr. Nomi Sorgenfrei and her team have constructed a new instrument at BESSY II to precisely measure the changes in samples using temporally-resolved electron spectroscopy for chemical analysis (trESCA) when irradiating the samples with low-intensity, ultra-short light pulses. These light pulses are generated at BESSY II using femtosecond time-slicing (femtoslicing) and are therefore both low intensity and extremely short duration. The new instrument, named SurfaceDynamics@FemtoSpeX, can also rapidly obtain meaningful measurements of electron energies, surface chemistry, and transient alterations using these low-intensity light pulses.

Observation of the phase transition

Analysis of the empirical data showed that the light pulse leads to a transient accumulation of charge at the surface of the sample, triggering the phase transition at the surface from a semiconducting to a metallic state.

“This phenomenon should also occur in other representatives of this class of materials, the p-doped semiconducting dichalcogenides, so it opens up possibilities of influencing functionality and catalytic activity in a deliberate way”, Sorgenfrei explains.

arö

You might also be interested in

  • Perowskit/Silizium-Tandemsolarzellen auf dem Weg vom Labor in die Produktion
    Science Highlight
    28.06.2022
    Perowskit/Silizium-Tandemsolarzellen auf dem Weg vom Labor in die Produktion
    KOALA/KOALA+ - Die am Helmholtz Zentrum Berlin (HZB) errichtete Clusteranlage ermöglicht Wafer mit Perowskit/Silizium-Tandemsolarzellen im Vakuum herzustellen; ausreichend groß, um eine industrielle Produktion abzubilden. Diese weltweit einzigartige Anlage trägt dazu bei, neue industrienahe Prozesse, Materialien und Solarzellen zu entwickeln.
  • Atomic displacements in High-Entropy Alloys examined
    Science Highlight
    27.06.2022
    Atomic displacements in High-Entropy Alloys examined
    High-entropy alloys of 3d metals have intriguing properties that are interesting for applications in the energy sector. An international team at BESSY II has now investigated the local order on an atomic scale in a so-called high-entropy Cantor alloy of chromium, manganese, iron, cobalt and nickel. The results from combined spectroscopic studies and statistical simulations expand the understanding of this group of materials.
  • HZB researcher Olga Kasian honored as young scientist
    News
    24.06.2022
    HZB researcher Olga Kasian honored as young scientist
    The Werner-von-Siemens-Ring Foundation has accepted Prof. Dr. Olga Kasian into its network in recognition of her outstanding scientific achievements. Olga Kasian heads a junior research group on electrocatalysis at HZB and is a professor at the University of Erlangen-Nürnberg (FAU). The foundation has been honoring young researchers in the technical and natural sciences since 1977 and offers them unique opportunities for interdisciplinary networking.