Solar cells: Losses made visible on the nanoscale

</p> <p>A conductive AFM tip is used to scan the sample surface of an a-Si:H/c-Si interface under ultra-high vacuum on the nm scale, revealing the transport channels of the charge carriers via defects in the a-Si:H (red states in the magnified section).</p> <p>

A conductive AFM tip is used to scan the sample surface of an a-Si:H/c-Si interface under ultra-high vacuum on the nm scale, revealing the transport channels of the charge carriers via defects in the a-Si:H (red states in the magnified section).

© Martin Künsting /HZB

Solar cells made of crystalline silicon achieve peak efficiencies, especially in combination with selective contacts made of amorphous silicon (a-Si:H). However, their efficiency is limited by losses in these contact layers. Now, for the first time, a team at Helmholtz-Zentrum Berlin (HZB) and the University of Utah, USA, has experimentally shown how such contact layers generate loss currents on the nanometre scale and what their physical origin is. Using a conductive atomic force microscope, they scanned the solar cell surfaces in ultra-high vacuum and detected tiny, nanometre-sized channels for the detrimental dark currents, which are due to disorder in the a-Si:H layer.

Silicon solar cells are now so cheap and efficient that they can generate electricity at prices of less than 2 cent/kWh. The most efficient silicon solar cells today are made with less than 10 nanometres thin selective amorphous silicon (a-Si:H) contact layers, which are responsible for separating the light-generated charges . Efficiencies of over 24% are achieved at HZB with such silicon heterojunction solar cells and are also part of a tandem solar cell that lead to a recently reported efficiency record of 29.15 % (A. Al-Ashouri, et al. Science 370, (2020)). The current world record from Japan for a single junction silicon solar cell is also based on this heterocontact (26.6%: K. Yoshikawa, et al. Nature Energy 2, (2017)).

There is still considerable efficiency potential related to such heterocontact systems, however, it is not yet understood in detail how these layers enable charge carrier separation and what their nanoscopic loss mechanisms are. The a-Si:H contact layers are characterised by their intrinsic disorder, which on the one hand enables excellent coating of the silicon surface and thus minimises the number of interfacial defects, but on the other hand also has a small disadvantage: it can lead to local recombination currents and to the formation of transport barriers.

For the first time, a team at HZB and the University of Utah has experimentally measured on an atomic level how such leakage currents form between c-Si and a-Si:H, and how they influence the solar cell performance. In a joint effort, a team led by Prof. Christoph Boehme at the University of Utah, and by Prof. Dr. Klaus Lips at HZB, they were able to resolve the loss mechanism at the interface of the above mentioned silicon heterocontact on the nanometre scale using ultrahigh vacuum conductive atomic force microscopy (cAFM).

The physicists were able to determine with near atomic resolution where the leakage current penetrates the selective a-Si:H contact and creates a loss process in the solar cell. In cAFM these loss currents appear as nanometre-sized current channels  and are the fingerprint of defects associated with the disorder of the amorphous silicon network. “These defects act as stepping stones for charges to penetrate the selective contact and induce recombination, we refer to this" as trap-assisted quantum mechanical tunnelling”, explains Lips. “This is the first time that such states have been made visible in a-Si:H and that we were able to unravel the loss mechanism under working conditions of the a solar cell of highest quality," the physicist reports enthusiastically.

The Utah/Berlin team was also able to showed that the channelled dark current fluctuates stochastically over time. The results indicate that a short-term current blockade is present, which is caused by local charge that is trapped in neighbouring defects which changes the energetic positioning of the tunnelling states (stepping stones). This trapped charge can also cause the local photovoltage at a current channel to rise to above 1V, which is far above what one would be able to use with a macroscopic contact. "At this transition from the nano to the macro worldwe find the exciting physics of heterojunctions and the key on how to further improve the efficiency of silicon solar cells in an even more targeted way," says Prof. Dr. Bernd Stannowski, who is responsible for the development of industrial silicon heterojunction solar cells at HZB.

arö


You might also be interested in

  • Key role of nickel ions in the Simons process discovered
    Science Highlight
    21.05.2024
    Key role of nickel ions in the Simons process discovered
    Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

  • Watching indium phosphide at work
    Science Highlight
    15.05.2024
    Watching indium phosphide at work
    Indium phosphide is a versatile semiconductor. The material can be used for solar cells, for hydrogen production and even for quantum computers – and with record-breaking efficiency. However, little research has been conducted into what happens on its surface. Researchers have now closed this gap and used ultra-fast lasers to scrutinise the dynamics of the electrons in the material.
  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.