Neue Einblicke in die Struktur von organisch-anorganischen Hybrid-Perowskiten

Das Video zeigt die Veränderungen der Kristallstruktur zeigt. Grau: Pb, Braun: Br, Schwarz: C, Blau: N; Weiß: H © HZB

10.00 s

In der Photovoltaik haben organisch-anorganische Hybrid-Perowskite eine rasante Karriere gemacht. Doch viele Fragen zur kristallinen Struktur dieser überraschend komplexen Materialklasse sind ungeklärt. Nun hat ein Team am HZB mit einer vierdimensionalen Modellierung Strukturdaten von Methylammonium-Bleibromid (MAPbBr3) interpretiert und dabei inkommensurable Überstrukturen und Modulationen der vorherrschenden Struktur identifiziert. Die Studie ist im ACS Journal of Physical Chemistry Letters publiziert und wurde von den Herausgebern als Editor’s Choice ausgewählt.

Organisch-anorganische Hybrid-Perowskite werden seit rund zehn Jahren intensiv für den Einsatz in Solarzellen untersucht. Dünnschichten aus solchen Perowskiten sind preiswert und erreichen schon jetzt hohe Wirkungsgrade. Außerdem lassen sie sich perfekt mit gängigen Solarzellmaterialien wie Silizium zu Tandemzellen kombinieren. Anfang 2020 konnte ein HZB-Team mit einer Tandemzelle aus Perowskit und Silizium einen Weltrekordwirkungsgrad von 29,15 % erreichen.

Doch trotz intensivster Forschung ist es bislang auch bei den bekanntesten Perowskit-Verbindungen wie Methylammonium- und Formamidinium-Bleihalogenid nicht gelungen, die Kristallstrukturen mit ihren vielfältigen Modulationen und Überstrukturen in Abhängigkeit von der Temperatur genau aufzuklären.  

Nun hat ein Team am HZB Strukturdaten von Methylammonium-Bleibromid (MAPbBr3) mit einem neuartigen Modell analysiert. Postdoc Dr. Dennis Wiedemann hat dafür ein Modell verwendet, welches zusätzlich zu den drei Raumdimensionen eine vierte Dimension berücksichtigt. Die Strukturdaten wurden bei einer Temperatur von 150 Kelvin an der University of Columbia gemessen.

„Das Problem in diesen hybriden Perowskiten ist die Tatsache, dass sich die verschiedenen Modifikationen energetisch nicht deutlich unterscheiden, so dass bereits kleinere Temperaturdifferenzen ausreichen, um Phasenübergänge anzustoßen“, erläutert Dr. Joachim Breternitz, Ko-Autor der Studie. Die Daten zur Kristallstruktur zeigen daher einen Mittelwert über viele Elementarzellen, sodass Modulationen und Überstrukturen nicht immer erkennbar sind. Das neue Modell erklärt die inkommensurablen Überstrukturen, die bei MAPbBr3 in einem kleinen Temperaturfenster um 150 K beobachtet werden, und die nicht die gleiche Periodizität wie das Kristallgitter besitzen. Diese komplexe Struktur kommt durch Verkippungen und Verschiebungen in der Kristallstruktur zu Stande. „Das neue Modell wird auch genauere Einblicke in die modulierten Strukturen anderer Perowskit-Verbindungen ermöglichen“, sagt Breternitz.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.