Grüner Wasserstoff: Israelisch-deutsches Team löst das Rätsel um Rost

Das HZB-Team konnte mit zeitaufgelösten Mikrowellenmessungen die Photoleitfähigkeit in den dünnen Rostschichten bestimmen, hier ein Bild des Messaufbaus.

Das HZB-Team konnte mit zeitaufgelösten Mikrowellenmessungen die Photoleitfähigkeit in den dünnen Rostschichten bestimmen, hier ein Bild des Messaufbaus. © HZB

Photoelektroden aus "Rost" wären eine preiswerte und stabile Lösung, um grünen Wasserstoff zu erzeugen. Aber ihre Effizienz ist begrenzt. Die TEM-Aufnahme zeigt eine Photoanode mit einer dünnen photoaktiven Rostschicht.

Photoelektroden aus "Rost" wären eine preiswerte und stabile Lösung, um grünen Wasserstoff zu erzeugen. Aber ihre Effizienz ist begrenzt. Die TEM-Aufnahme zeigt eine Photoanode mit einer dünnen photoaktiven Rostschicht. © Technion

Metalloxide wie Rost eignen sich als Photoelektroden, um „grünen“ Wasserstoff mit Sonnenlicht zu erzeugen. Doch trotz jahrzehntelanger Forschung an diesem preisgünstigen Material sind die Fortschritte begrenzt. Ein Team am HZB hat nun gemeinsam mit Partnern von der Ben-Gurion-Universität und dem Technion, Israel, die optoelektronischen Eigenschaften von Rost (Hämatit) und anderen Metalloxiden in bisher nicht gekanntem Detail analysiert. Ihre Ergebnisse zeigen, dass der maximal erreichbare Wirkungsgrad von Hämatit-Elektroden deutlich geringer ist als bisher angenommen. Die Studie gibt darüber hinaus konkrete Hinweise, wie sich neue Materialien für Photoelektroden realistischer bewerten lassen.

Wasserstoff wird im Energiesystem der Zukunft in großen Mengen als Energieträger und Rohstoff benötigt. Dafür muss Wasserstoff jedoch klimaneutral erzeugt werden, zum Beispiel über eine so genannte Photo-Elektrolyse, in der Wasser in seine Elemente Wasserstoff und Sauerstoff gespalten wird. Die nötige Energie liefert dafür das Sonnenlicht. Als Photoelektroden kommen halbleitende Materialien in Frage, die Sonnenlicht in Strom umwandeln und im Wasser stabil bleiben. Zu den besten Kandidaten für preisgünstige und stabile Photoelektroden gehören Metalloxide. Einige dieser Metalloxide besitzen zudem katalytisch aktive Oberflächen, die die Bildung von Wasserstoff an der Kathode bzw. Sauerstoff an der Anode beschleunigen.

Warum bleibt Rost unter den berechneten Möglichkeiten?

Im Fokus der Forschung steht seit langem Hämatit (α-Fe2O3), das weithin unter dem Namen Rost bekannt ist. Hämatit ist stabil im Wasser, extrem preiswert und eignet sich gut als Photoanode mit nachgewiesener katalytischer Aktivität für die Sauerstoffentwicklung. Obwohl seit etwa 50 Jahren an Hämatit-Photoanoden geforscht wird, liegt die Photostrom-Umwandlungseffizienz bei weniger als 50 Prozent des theoretischen Maximalwertes. Zum Vergleich: Der Wirkungsgrad des Halbleitermaterials Silizium, das heute fast 90 Prozent des Photovoltaikmarktes dominiert, liegt bei etwa 90 Prozent des theoretischen Maximalwertes. Über die Gründe rätselt man seit langem. Was genau wurde übersehen? Woran liegt es, dass trotz langer Forschung nur bescheidene Steigerungen des Wirkungsgrads erreicht werden konnten?

Israelisch-Deutsche Kooperation löst das Rost-Rätsel

Nun aber hat ein Team um Dr. Daniel Grave (Ben-Gurion-Universität), Dr. Dennis Friedrich (HZB) und Prof. Dr. Avner Rothschild (Technion) eine Erklärung dafür geliefert und in Nature Materials publiziert. Die Gruppe am Technion untersuchte, wie die Wellenlänge des absorbierten Lichts die photoelektrochemischen Eigenschaften der Hämatit-Dünnschichten beeinflusst, während das HZB-Team mit zeitaufgelösten Mikrowellenmessungen die Beweglichkeit der Ladungsträger in dünnen Rostschichten bestimmte.

Wichtige physikalische Eigenschaft des Materials

Durch die Kombination ihrer Ergebnisse gelang es den Forschenden, eine grundlegende physikalische Eigenschaft des Materials zu extrahieren, die bei der Betrachtung anorganischer Solarabsorber bisher vernachlässigt wurde: Das Spektrum der Photogenerationsausbeute. „Grob gesagt bedeutet dies, dass nur ein Teil der absorbierten Licht-Energie im Hämatit auch mobile Ladungsträger erzeugt, der Rest erzeugt eher lokalisierte Ladungsträger und geht somit verloren", erklärt Grave.

Obergrenze neu berechnet

"Dieser neue Ansatz gibt einen experimentellen Einblick in die Wechselwirkung zwischen Licht und Material in Hämatit und erlaubt es, das Spektrum in produktive und nicht-produktive Absorption zu unterscheiden", erklärt Rothschild. "Damit konnten wir zeigen, dass die effektive Obergrenze für die Umwandlungseffizienz von Hämatit-Photoanoden deutlich niedriger ist als bisher berechnet", sagt Grave.  Nach der neuen Berechnung kommen die heutigen "Champions" unter den Hämatit-Photoanoden schon recht nahe an das theoretisch mögliche Maximum heran. Viel besser geht es also nicht mehr.  

Realistische Einschätzung von neuen Materialien

Der Ansatz wurde auch erfolgreich auf das Modellmaterial TiO2 und das derzeit beste Metalloxid-Photoanodenmaterial BiVO4 angewendet. "Mit diesem neuen Ansatz haben wir unserem Arsenal ein mächtiges Werkzeug hinzugefügt, das es uns ermöglicht, das tatsächliche Potenzial von Photoelektrodenmaterialien zu ermitteln. Wenn wir dies auf neuartige Materialien anwenden, wird dies hoffentlich die Entdeckung und Entwicklung der idealen Photoelektrode für die solare Wasserspaltung beschleunigen. Es würde uns auch erlauben, 'schnell zu scheitern', was bei der Entwicklung neuer Absorbermaterialien wohl ebenso wichtig ist", so Friedrich.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.