Renske van der Veen leitet neue Abteilung „Atomare Dynamik in Licht-Energie Umwandlung“

Renske van der Veen arbeitet seit vielen Jahren mit ultraschnellen Röntgenmethoden.

Renske van der Veen arbeitet seit vielen Jahren mit ultraschnellen Röntgenmethoden. © Irene Böttcher-Gajweski/MPIBC

Ab Juni 2021 baut Dr. Renske van der Veen am HZB eine neue Forschungsgruppe auf. Die Chemikerin ist Expertin für zeitaufgelöste Röntgenspektroskopie und Elektronenmikroskopie und untersucht katalytische Prozesse, die die Umwandlung von Solarenergie in chemische Energie ermöglichen.

Dr. Renske van der Veen hat erfolgreich eine Helmholtz-Förderung für die Erstberufung exzellenter Wissenschaftlerinnen eingeworben, worauf das HZB bereits ein S-W2-Berufungsverfahren an der TU Berlin angestoßen hat. Als Forscherin hat sie seit 14 Jahren Erfahrung im Bereich von ultraschnellen Röntgenmethoden. „Diese Erfahrungen kann ich in meinem Forschungsvorhaben an BESSY II optimal einbringen und erweitern,“ sagt van der Veen und betont: „Die Ergebnisse könnten auch in die Bestimmung der Anforderungen an BESSY III, den Scientific Case, einfließen.“

Renske van der Veen hat an der ETH Zürich studiert, an der École Polytechnique Fédérale de Lausanne (EPFL) promoviert und am California Institute of Technology, dem Max Planck Institut für Biophysikalische Chemie in Göttingen, und der University of Illinois geforscht, wo sie auch eine Assistenzprofessur hatte. Ihre Forschung wurde mit dem Sofja Kovalevskaja Award der Alexander von Humboldt-Stiftung und dem Packard Fellowship for Science and Engineering ausgezeichnet

Am HZB freut sich Renske van der Veen nun auf die enge Zusammenarbeit mit den Arbeitsgruppen, die an verwandten Fragestellungen arbeiten, von der Modellierung von ultraschnellen Energietransfers über die Weiterentwicklung von Messtechniken im Femto- und Pikosekundenbereich an BESSY II, bis hin zur Entwicklung von Photoelektroden und heterogenen Photokatalysatoren am Institut für Solare Brennstoffe.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.