Renske van der Veen heads new department "Atomic Dynamics in Light-Energy Conversion"

Renske van der Veen has a lot of experience with ultrafast x-ray measurements.

Renske van der Veen has a lot of experience with ultrafast x-ray measurements. © Irene Böttcher-Gajweski/MPIBC

From June 2021, Dr. Renske van der Veen is setting up a new research group at HZB. The chemist is an expert in time-resolved X-ray spectroscopy and electron microscopy and studies catalytic processes that enable the conversion of solar energy into chemical energy.

Dr. Renske van der Veen successfully obtained a Helmholtz Funding of first-time professorial appointments of excellent women scientists (W2/W3), whereupon the HZB has already initiated an S-W2 appointment procedure at TU Berlin. She has 14 years of experience in the field of ultrafast X-ray methods. "At BESSY II, I can apply and expand this experience in my research project," says van der Veen, emphasising, "The results could also contribute to the scientific case for BESSY III."

Renske van der Veen studied at ETH Zurich, received her PhD from the École Polytechnique Fédérale de Lausanne (EPFL) and conducted research at the California Institute of Technology, the Max Planck Institute for Biophysical Chemistry in Göttingen, and the University of Illinois, where she held an assistant professorship. Her research was honoured with the Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation and the Packard Fellowship for Science and Engineering.

At HZB, Renske van der Veen is now looking forward to exchange with research groups working on related topics, from modelling ultrafast energy transfer, developing ultrafast techniques at BESSY II, to developing photoelectrodes and heterogeneous photocatalysts at the Institute for Solar Fuels.

arö


You might also be interested in

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    03.04.2024
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells. 
  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).