How quantum dots can "talk" to each other

The illustration shows two quantum dots "communicating" with each other by exchanging light.

The illustration shows two quantum dots "communicating" with each other by exchanging light. © HZB

A group at HZB has worked out theoretically how the communication between two quantum dots can be influenced with light.  The team led by Annika Bande also shows ways to control the transfer of information or energy from one quantum dot to another. To this end, the researchers calculated the electronic structure of two nanocrystals, which act as quantum dots. With the results, the movement of electrons in quantum dots can be simulated in real time.

So-called quantum dots are a new class of materials with many applications. Quantum dots are realized by tiny semiconductor crystals with dimensions in the nanometre range. The optical and electrical properties can be controlled through the size of these crystals. As QLEDs, they are already on the market in the latest generations of TV flat screens, where they ensure particularly brilliant and high-resolution colour reproduction. However, quantum dots are not only used as "dyes", they are also used in solar cells or as semiconductor devices, right up to computational building blocks, the qubits, of a quantum computer.

Now, a team led by Dr. Annika Bande at HZB has extended the understanding of the interaction between several quantum dots with an atomistic view in a theoretical publication. 

Annika Bande heads the "Theory of Electron Dynamics and Spectroscopy" group at HZB and is particularly interested in the origins of quantum physical phenomena. Although quantum dots are extremely tiny nanocrystals, they consist of thousands of atoms with, in turn, multiples of electrons. Even with supercomputers, the electronic structure of such a semiconductor crystal could hardly be calculated, emphasises the theoretical chemist, who recently completed her habilitation at Freie Universität. "But we are developing methods that describe the problem approximately," Bande explains. "In this case, we worked with scaled-down quantum dot versions of only about a hundred atoms, which nonetheless feature  the characteristic properties of real nanocrystals."  

With this approach, after a year and a half of development and in collaboration with Prof. Jean Christophe Tremblay from the CNRS-Université de Lorraine in Metz, we succeeded in simulating the interaction of two quantum dots, each made of hundreds of atoms, which exchange energy with each other. Specifically, we have investigated how these two quantum dots can absorb, exchange and permanently store the energy controlled by light. A first light pulse is used for excitation, while the second light pulse induces the storage.

In total, we investigated three different pairs of quantum dots to capture the effect of size and geometry. We calculated the electronic structure with highest precision and simulated the electronic motion in real time at femtosecond resolution (10-15 s).

The results are also very useful for experimental research and development in many fields of application, for example for the development of qubits or to support photocatalysis, to produce green hydrogen gas by  sunlight. "We are constantly working on extending our models towards even more realistic descriptions of quantum dots," says Bande, "e.g. to capture the influence of temperature and environment."

Pascal Krause / First Author of the publication


You might also be interested in

  • Unconventional piezoelectricity in ferroelectric hafnia
    Science Highlight
    26.02.2024
    Unconventional piezoelectricity in ferroelectric hafnia
    Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometre range. While their ferroelectric behaviour is extensively studied, results on piezoelectric effects have so far remained mysterious. A new study now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another ground-breaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.
  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.