Water as a metal - detected at BESSY II

After about 5 seconds, a thin film of metallic water has formed around the NaK drop, recognisable by the golden shimmer.

After about 5 seconds, a thin film of metallic water has formed around the NaK drop, recognisable by the golden shimmer. © HZB

The picture on the top left shows an NaK drop in a vacuum without water vapour. The other pictures show the development of this drop over time when water vapour is present. Thus, a gold-coloured layer of metallic water forms first, followed by white spots of alkali hydroxide. After about 10 seconds, the drop falls.

The picture on the top left shows an NaK drop in a vacuum without water vapour. The other pictures show the development of this drop over time when water vapour is present. Thus, a gold-coloured layer of metallic water forms first, followed by white spots of alkali hydroxide. After about 10 seconds, the drop falls. © HZB/Nature 10.1038/s41586-021-03646-5

In the sample chamber, the NaK alloy drips from a nozzle. As the droplet grows, water vapour flows into the sample chamber and forms a thin skin on the drop's surface.

In the sample chamber, the NaK alloy drips from a nozzle. As the droplet grows, water vapour flows into the sample chamber and forms a thin skin on the drop's surface. © HZB

Under normal conditions, pure water is an almost perfect insulator. Water only develops metallic properties under extreme pressure, such as exists deep inside of large planets. Now, an international collaboration has used a completely different approach to produce metallic water and documented the phase transition at BESSY II. The study is published now in Nature.

Every child knows that water conducts electricity - but this refers to "normal" everyday water that contains salts. Pure, distilled water, on the other hand, is an almost perfect insulator. It consists of H2O molecules that are loosely linked to one another via hydrogen bonds. The valence electrons remain bound and are not mobile. To create a conduction band with freely moving electrons, water would have to be pressurised to such an extent that the orbitals of the outer electrons overlap. However, a calculation shows that this pressure is only present in the core of large planets such as Jupiter.

Providing electrons

An international collaboration of 15 scientists from eleven research institutions has now used a completely different approach to produce a aqueous solution with metallic properties for the first time and documented this phase transition at BESSY II. To do this, they experimented with alkali metals, which release their outer electron very easily.

Avoiding explosion

However, the chemistry between alkali metals and water is known to be explosive. Sodium or other alkali metals immediately start to burn in water. But the team found a way to keep this violent chemistry in check: They did not throw a piece of alkali metal into water, but they did it the other way round: they put a tiny bit of water on a drop of alkali metal, a sodium-potassium (Na-K) alloy, which is liquid at room temperature.

Experiment at BESSY II

At BESSY II, they set up the experiment in the SOL³PES high vacuum sample chamber at the U49/2 beamline. The sample chamber contains a fine nozzle from which the liquid Na-K alloy drips. The silver droplet grows for about 10 seconds until it detaches from the nozzle. As the droplet grows, some water vapour flows into the sample chamber and forms an extremely thin skin on the surface of the droplet, only a few layers of water molecules. This almost immediately causes the electrons as well as the metal cations to dissolve from the alkali alloy into the water. The released electrons in the water behave like free electrons in a conduction band.

Golden water skin

"You can see the phase transition to metallic water with the naked eye! The silvery sodium-potassium droplet covers itself with a golden glow, which is very impressive," reports Dr. Robert Seidel, who supervised the experiments at BESSY II. The thin layer of gold-coloured metallic water remains visible for a few seconds. This enabled the team led by Prof. Pavel Jungwirth, Czech Academy of Sciences, Prague, to prove with spectroscopic analyses at BESSY II and at the IOCB in Prague that it is indeed water in a metallic state.

Fingerprints of the metallic phase

The two decisive fingerprints of a metallic phase are the plasmon frequency and the conduction band. The groups were able to determine these two quantities using optical reflection spectroscopy and synchrotron X-ray photoelectron spectroscopy: While the plasmon frequency of the gold-coloured, metallic "water skin" is about 2.7 eV (i.e. in the blue range of visible light), the conduction band has a width of about 1.1 eV with a sharp Fermi edge. "Our study not only shows that metallic water can indeed be produced on Earth, but also characterises the spectroscopic properties associated with its beautiful golden metallic luster," says Seidel.

Nature, 28.07.2021: Spectroscopic evidence for a gold-coloured metallic water solution

arö


You might also be interested in

  • Spintronics at BESSY II: Domain walls in magnetic nanowires
    Science Highlight
    02.06.2023
    Spintronics at BESSY II: Domain walls in magnetic nanowires
    Magnetic domains walls are known to be a source of electrical resistance due to the difficulty for transport electron spins to follow their magnetic texture. This phenomenon holds potential for utilization in spintronic devices, where the electrical resistance can vary based on the presence or absence of a domain wall. A particularly intriguing class of materials are half metals such as La2/3Sr1/3MnO3 (LSMO) which present full spin polarization, allowing their exploitation in spintronic devices. Still the resistance of a single domain wall in half metals remained unknown. Now a team from Spain, France and Germany has generated a single domain wall on a LSMO nanowire and measured resistance changes 20 times larger than for a normal ferromagnet such as Cobalt.
  • Fractons as information storage: Not yet quite tangible, but close
    Science Highlight
    26.05.2023
    Fractons as information storage: Not yet quite tangible, but close
    A new quasiparticle with interesting properties has appeared in solid-state physics - but so far only in the theoretical modelling of solids with certain magnetic properties. An international team from HZB and Freie Universität Berlin has now shown that, contrary to expectations, quantum fluctuations do not make the quasiparticle appear more clearly, but rather blur its signature.
  • Graphene on titanium carbide triggers a novel phase transition
    Science Highlight
    25.05.2023
    Graphene on titanium carbide triggers a novel phase transition
    Researchers have discovered a Lifshitz-transition in TiC, driven by a graphene overlayer, at the photon source BESSY II. Their study sheds light on the exciting potential of 2D materials such as graphene and the effects they can have on neighboring materials through proximity interactions.