Batterieforschung - Projekt SkaLiS mit 2,2 Millionen Euro vom BMBF gefördert

Pouchzellen Labor

Pouchzellen Labor © HZB

SkaLiS Projektteam

SkaLiS Projektteam © HZB

Für die Energiewende werden leistungsstarke, kompakte und günstige Batterien benötigt. Dafür forschen am Helmholtz-Zentrum Berlin (HZB) Gruppen um Prof. Dr. Yan Lu, Dr. Ingo Manke und Dr. Sebastian Risse. Sie untersuchen und entwickeln neuartige Elektroden-Materialien, die auf Schwefel oder Silizium basieren. Nun koordiniert Risse auch noch ein großes Projekt, an dem neben Teams aus dem HZB auch die Universität Potsdam, die Technische Universität Berlin, die Technische Universität Dresden sowie das Fraunhofer Institut für Werkstoff- und Strahltechnik IWS Dresden beteiligt sind.

Das Projekt SkaLiS startet im Juli 2021 und wird in den kommenden drei Jahren mit insgesamt 2,2 Millionen Euro durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert. SkaLiS steht für „Operando-Analyse gestütztes, skalenübergreifendes und skalierbareres Elektroden-Design zur Leistungserhöhung von Lithium-Schwefel-Pouchzellen“.

In SkaLiS (FKZ: 03XP0398) wollen die beteiligten Forschungsgruppen einen Lithium-Schwefel (Li-S) Demonstrator auf Pouchzellenebene herstellen, dessen Kathode gleich auf mehreren Skalen strukturiert ist. Mit diesem Ansatz soll die Li-S Batterie deutlich stabiler und leistungsstärker als bisherige Batteriezellen sein. Für die Bewertung der industriellen Relevanz steht dem Konsortium ein Industriebeirat bestehend aus Vertretern der Firmen Airbus, Rolls-Royce, Wingcopter, Customcells und E-Lyte zur Seite.

Die HZB-Abteilung „Elektrochemische Energiespeicherung“ hat dafür bereits die passende Infrastruktur aufgebaut: Die sogenannte „Pouch-Cell-Line“ – dort lassen sich aus Ausgangsmaterialien in mehreren einfachen Schritten Versuchs-Batterien in einem flachen „Taschenformat“ herstellen (siehe Filmclip).

Im SkaLiS Projekt ist darüber hinaus eine sechsstellige Investition in ein neues Detektorsystem für ein Röntgenkleinwinkel-Instrument vorgesehen. Es wird derzeit am Standort Wannsee in Risses Elektrochemie-Gruppe aufgebaut und ist besonders geeignet, um Materialien wie Batterie-Elektroden zu untersuchen.

Das Kathodenmaterial stellt das Team um die Chemikerin Yan Lu selbst her. Es besteht aus fein vermahlenen Schwefelpartikeln, die in Kohlenstoff mit spezieller Porosität eingelagert werden. Nach der Fertigung der Batteriezelle in Berlin und Dresden werden die elektrochemische Leistungsfähigkeit sowie die Stabilität eingehend mit operando Methoden von den Arbeitsgruppen um Manke und Risse analysiert. Somit lassen sich direkte Rückschlüsse auf die Zellfertigung und die Kathodenmaterial-Synthese ziehen, die auch für die Industrie relevant sind.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.

  • 5000. Patient in der Augentumortherapie mit Protonen behandelt
    Nachricht
    19.08.2025
    5000. Patient in der Augentumortherapie mit Protonen behandelt
    Seit mehr als 20 Jahren bieten die Charité – Universitätsmedizin Berlin und das Helmholtz-Zentrum Berlin (HZB) gemeinsam die Bestrahlung von Augentumoren mit Protonen an. Dafür betreibt das HZB einen Protonenbeschleuniger in Berlin-Wannsee, die medizinische Betreuung der Patienten erfolgt durch die Charité. Anfang August wurde der 5000. Patient behandelt.
  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.