Batterieforschung - Projekt SkaLiS mit 2,2 Millionen Euro vom BMBF gefördert

Pouchzellen Labor

Pouchzellen Labor © HZB

SkaLiS Projektteam

SkaLiS Projektteam © HZB

Für die Energiewende werden leistungsstarke, kompakte und günstige Batterien benötigt. Dafür forschen am Helmholtz-Zentrum Berlin (HZB) Gruppen um Prof. Dr. Yan Lu, Dr. Ingo Manke und Dr. Sebastian Risse. Sie untersuchen und entwickeln neuartige Elektroden-Materialien, die auf Schwefel oder Silizium basieren. Nun koordiniert Risse auch noch ein großes Projekt, an dem neben Teams aus dem HZB auch die Universität Potsdam, die Technische Universität Berlin, die Technische Universität Dresden sowie das Fraunhofer Institut für Werkstoff- und Strahltechnik IWS Dresden beteiligt sind.

Das Projekt SkaLiS startet im Juli 2021 und wird in den kommenden drei Jahren mit insgesamt 2,2 Millionen Euro durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert. SkaLiS steht für „Operando-Analyse gestütztes, skalenübergreifendes und skalierbareres Elektroden-Design zur Leistungserhöhung von Lithium-Schwefel-Pouchzellen“.

In SkaLiS (FKZ: 03XP0398) wollen die beteiligten Forschungsgruppen einen Lithium-Schwefel (Li-S) Demonstrator auf Pouchzellenebene herstellen, dessen Kathode gleich auf mehreren Skalen strukturiert ist. Mit diesem Ansatz soll die Li-S Batterie deutlich stabiler und leistungsstärker als bisherige Batteriezellen sein. Für die Bewertung der industriellen Relevanz steht dem Konsortium ein Industriebeirat bestehend aus Vertretern der Firmen Airbus, Rolls-Royce, Wingcopter, Customcells und E-Lyte zur Seite.

Die HZB-Abteilung „Elektrochemische Energiespeicherung“ hat dafür bereits die passende Infrastruktur aufgebaut: Die sogenannte „Pouch-Cell-Line“ – dort lassen sich aus Ausgangsmaterialien in mehreren einfachen Schritten Versuchs-Batterien in einem flachen „Taschenformat“ herstellen (siehe Filmclip).

Im SkaLiS Projekt ist darüber hinaus eine sechsstellige Investition in ein neues Detektorsystem für ein Röntgenkleinwinkel-Instrument vorgesehen. Es wird derzeit am Standort Wannsee in Risses Elektrochemie-Gruppe aufgebaut und ist besonders geeignet, um Materialien wie Batterie-Elektroden zu untersuchen.

Das Kathodenmaterial stellt das Team um die Chemikerin Yan Lu selbst her. Es besteht aus fein vermahlenen Schwefelpartikeln, die in Kohlenstoff mit spezieller Porosität eingelagert werden. Nach der Fertigung der Batteriezelle in Berlin und Dresden werden die elektrochemische Leistungsfähigkeit sowie die Stabilität eingehend mit operando Methoden von den Arbeitsgruppen um Manke und Risse analysiert. Somit lassen sich direkte Rückschlüsse auf die Zellfertigung und die Kathodenmaterial-Synthese ziehen, die auch für die Industrie relevant sind.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Michael Naguib als Humboldt-Forschungspreisträger am HZB
    Nachricht
    16.06.2025
    Michael Naguib als Humboldt-Forschungspreisträger am HZB
    Professor Michael Naguib von der Tulane University in den USA ist einer der Entdecker einer neuen Klasse von 2D-Materialien: MXene zeichnen sich durch eine blätterteigartige Struktur aus und bieten viele Anwendungsmöglichkeiten, beispielsweise bei der Erzeugung von grünem Wasserstoff oder als Speichermedium für elektrische Energie. Mit dem Humboldt-Forschungspreis im Jahr 2025 verstärkt Michael Naguib seine Zusammenarbeit mit Prof. Volker Presser am Leibniz-Institut für Neue Materialien in Saarbrücken und mit Dr. Tristan Petit am HZB.
  • Tage des offenen Reallabors - Das HZB lädt ein!
    Nachricht
    11.06.2025
    Tage des offenen Reallabors - Das HZB lädt ein!
    Photovoltaik trifft Architektur.
  • KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Nachricht
    04.06.2025
    KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern.