Battery research - SkaLiS project funded with 2.2 million euros

Pouch cell Lab

Pouch cell Lab © HZB

SkaLiS Project Team

SkaLiS Project Team © HZB

Powerful, compact, and affordable batteries are needed for the energy transition. Groups at the Helmholtz-Zentrum Berlin (HZB) led by Prof. Yan Lu, Dr. Ingo Manke, and Dr. Sebastian Risse are conducting this research. They are investigating and developing novel types of electrode materials based on sulphur and silicon. Risse is now also coordinating a large project involving teams from HZB as well as from the University of Potsdam near Berlin, the Technische Universität Berlin, the Technische Universität Dresden and the Fraunhofer Institute for Material and Beam Technology IWS Dresden.

The SkaLiS project will commence July 2021 and receive a total of 2.2 million euros in funding over the next three years from the German Federal Ministry of Education and Research (BMBF). SkaLiS stands for "Operando analysis-supported, trans-scale and scalable electrode design for increasing the performance of lithium-sulphur pouch cells".

The participating research groups in SkaLiS (FKZ: 03XP0398) intend to produce a lithium-sulphur (Li-S) demonstrator battery in pouch cell format whose cathode simultaneously exhibits structure at several scales. This approach should enable the Li-S battery to be considerably safer, offer longer service life, and higher performance than previous battery cells. For the assessment of industrial relevance, the consortium is supported by an industrial advisory board consisting of representatives from Airbus, Rolls-Royce, Wingcopter, Customcells and E-Lyte.

The
HZB Institute for Electrochemical Energy Storage has already set up the appropriate infrastructure to accomplish this work. It is known as the Pouch-Cell Line – experimental batteries in flat pouches can be produced in the facility from raw materials in a few simple steps (see video clip).

In addition, the SkaLiS project will also make a six-figure investment in a new detector system for a small-angle X-ray instrument. It is currently being set up at the Berlin-Wannsee campus in Risse's electrochemistry group and is particularly suited for studying materials such as battery electrodes.

Prof. Yan Lu, head of the Institute, and her team of chemists produce the cathode material themselves. It consists of finely ground sulphur particles embedded in a carbon powder substrate that features specific porosities. After the experimental battery cell has been fabricated in Berlin and Dresden, the electrochemical performance, safety, and service life are analysed in detail by the research groups headed by Manke and Risse using operando methods. This allows immediate conclusions to be drawn about cell fabrication and cathode material synthesis, which are also important for industrial-scale applications. 

arö

You might also be interested in

  • Green hydrogen: How photoelectrochemical water splitting may become competitive
    Science Highlight
    20.03.2023
    Green hydrogen: How photoelectrochemical water splitting may become competitive
    Sunlight can be used to produce green hydrogen directly from water in photoelectrochemical (PEC) cells. So far, systems based on this "direct approach" have not been energetically competitive. However, the balance changes as soon as some of the hydrogen in such PEC cells is used in-situ for a catalytic hydrogenation reaction, resulting in the co-production of chemicals used in the chemical and pharmaceutical industries. The energy payback time of photoelectrochemical "green" hydrogen production can be reduced dramatically, the study shows.
  • Perovskite solar cells from the slot die coater - a step towards industrial production
    Science Highlight
    16.03.2023
    Perovskite solar cells from the slot die coater - a step towards industrial production
    Solar cells made from metal halide perovskites achieve high efficiencies and their production from liquid inks requires only a small amount of energy. A team led by Prof. Dr. Eva Unger at Helmholtz-Zentrum Berlin is investigating the production process. At the X-ray source BESSY II, the group has analyzed the optimal composition of precursor inks for the production of high-quality FAPbI3 perovskite thin films by slot-die coating. The solar cells produced with these inks were tested under real life conditions in the field for a year and scaled up to mini-module size.
  • Superstore MXene: New proton hydration structure determined
    Science Highlight
    13.03.2023
    Superstore MXene: New proton hydration structure determined
    MXenes are able to store large amounts of electrical energy like batteries and to charge and discharge rather quickly like a supercapacitor. They combine both talents and thus are a very interesting class of materials for energy storage. The material is structured like a kind of puff pastry, with the MXene layers separated by thin water films. A team at HZB has now investigated how protons migrate in the water films confined between the layers of the material and enable charge transport. Their results have been published in the renowned journal Nature Communications and may accelerate the optimisation of these kinds of energy storage materials.