When vibrations increase on cooling: Anti-freezing observed

The development of this speckle pattern over time reveals microsocopic fluctuations in the material.

The development of this speckle pattern over time reveals microsocopic fluctuations in the material. © 10.1103/PhysRevLett.127.057001

An international team has observed an amazing phenomenon in a nickel oxide material during cooling: Instead of freezing, certain fluctuations actually increase as the temperature drops. Nickel oxide is a model system that is structurally similar to high-temperature superconductors. The experiment shows once again that the behaviour of this class of materials still holds surprises.

In virtually all matter, lower temperatures mean less movement of its microscopic components. The less heat energy is available, the less often atoms change their location or magnetic moments their direction: they freeze. An international team led by scientists from HZB and DESY has now observed for the first time the opposite behaviour in a nickel oxide material closely related to high-temperature superconductors. Fluctuations in this nickelate do not freeze on cooling, but become faster.

We used the innovative technique of x-ray correlation spectroscopy to observe them: This allowed us to track the order of elementary magnetic moments (spins) in space and time using coherent soft x-rays. These spins arrange themselves into a stripe-like pattern upon cooling. This ordering is not perfect at higher temperatures, but consists of a random arrangement of small locally ordered regions. We found this arrangement not to be static, but to fluctuate on time scales of a few minutes. As the cooling continues, these fluctuations initially become slower and slower and the individual ordered regions grow. So far, this behaviour corresponds to what many materials show: The less thermal energy is available, the more fluctuations freeze and order grows.

What is completely unusual and had never been observed in this way before was that as the material cooled down further, the fluctuations became faster again, while the ordered areas shrank. Stripe order thus decays at low temperatures both spatially and through increasingly faster fluctuations, showing a kind of anti-freezing.

This observation may help to better understand high-temperature superconductivity in copper oxides (cuprates). In cuprates, stripe order similar to that in nickelates is thought to compete with superconductivity. There, too, the stripe order decays at low temperatures, which has been explained as superconductivity, setting in at low temperatures, suppresses the stripe order. Since there is no superconductivity in nickelates, but the stripe order nevertheless decays at low temperatures, an important aspect seems to be missing from the present description of cuprate superconductivity. It is possible that the stripe order in cuprates is not simply suppressed, but also decays for intrinsic reasons, thus “clearing the field” for the emergence of superconductivity. A deeper understanding of this mechanism could help control superconductivity.

The study shows the potential of coherent soft x-rays for studying materials that are spatially non-uniform, especially those materials where new functionality arises from this spatial non-uniformity. Correlation spectroscopy with lasers has been used for many decades to study, for example, the motion of colloids in solutions. Transferred to soft x-rays, the technique can be used to follow the fluctuations of magnetic and e.g. also electronic and chemical disorder in space and time.

The experiments described here were carried out at the Advanced Light Source ALS, California.

With future x-ray sources such as BESSY III, which will produce many orders of magnitude more intense coherent x-ray radiation than current sources, it will become possible to extend this technique to faster fluctuations and shorter length scales, and thus to observe effects that have not been achievable so far.

Christian Schüßler-Langeheine

You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    27.01.2023
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • HZB physicist appointed to Gangneung-Wonju National University, South Korea
    News
    25.01.2023
    HZB physicist appointed to Gangneung-Wonju National University, South Korea
    Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.
  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.