Wenn beim Abkühlen die Vibrationen zunehmen: Anti-Frieren beobachtet

Die Entwicklung dieses Fleckmusters mit der Zeit zeigt mikroskopische Fluktuationen in der Probe.

Die Entwicklung dieses Fleckmusters mit der Zeit zeigt mikroskopische Fluktuationen in der Probe. © 10.1103/PhysRevLett.127.057001

Ein internationales Team hat in einem Nickel-Oxid-Material beim Abkühlen einen erstaunlichen Effekt beobachtet: Statt einzufrieren, nehmen bestimmte Fluktuationen mit sinkender Temperatur sogar zu. Nickel-Oxid ist ein Modellsystem, das strukturell den Hochtemperatur-Supraleitern ähnelt. Das Experiment zeigt wieder einmal, dass das Verhalten dieser Materialklasse immer Überraschungen bereithält.

In praktisch aller Materie bedeuten tiefere Temperaturen weniger Bewegung ihrer mikroskopischen Bestandteile. Je weniger Wärme als Energie zur Verfügung steht, desto seltener wechseln Atome ihren Ort oder magnetische Momente ihre Richtung: Sie frieren ein. Ein internationales Team geleitet von Wissenschaftlern des HZB und von DESY hat nun erstmals ein gegenteiliges Verhalten in einem Nickel-Oxid-Material beobachtet, das eng mit Hochtemperatur-Supraleitern verwandt ist. Fluktuationen in diesem Nickelat frieren beim Abkühlen nicht etwa ein, sondern werden schneller.

Wir nutzten für ihre Beobachtung die innovative Technik der Röntgen-Korrelationsspektroskopie: Dabei konnten wir mittels kohärenter weicher Röntgenstrahlung die Ordnung elementarer magnetischer Momente (Spins) in Raum und Zeit verfolgen. Beim Abkühlen ordnen sich Spins zu einem Streifen-Muster an. Diese Ordnung ist bei höheren Temperaturen nicht perfekt, sondern besteht aus einer zufälligen Anordnung kleiner lokal geordneter Bereiche. Wir fanden, dass diese Anordnung nicht statisch ist, sondern auf Zeitskalen von einigen Minuten fluktuiert. Beim weiteren Abkühlen werden diese Fluktuationen zunächst immer langsamer und die einzelnen geordneten Bereiche wachsen. Soweit entspricht dieses Verhalten dem, was eine Vielzahl von Materialien zeigen: Je weniger thermische Energie zur Verfügung steht, desto mehr frieren Fluktuationen ein und nimmt Ordnung zu.

Völlig ungewöhnlich und noch nie so beobachtet war jedoch, dass beim weiteren Abkühlen die Fluktuationen wieder schneller wurden, während die geordneten Bereiche schrumpften. Die Streifen-Ordnung zerfällt also bei tiefen Temperaturen sowohl räumlich als auch durch immer schneller werdende Fluktuationen und zeigt somit eine Art Anti-Frieren.

Diese Beobachtung hilft möglicherweise dabei, die Hochtemperatur-Supraleitung in Kupfer-Oxiden (Kupraten) besser zu verstehen. In Kupraten wird angenommen, dass eine Streifenordnung ähnlich der in Nickelaten in Konkurrenz zur Supraleitung steht. Auch dort zerfällt die Streifenordnung bei tiefen Temperaturen, was bisher damit erklärt wurde, dass die sich bildende Supraleitung die Streifenordnung verdrängt. Da in Nickelaten keine Supraleitung existiert, die Streifenordnung aber dennoch bei tiefen Temperaturen zerfällt, scheint bei der bisherigen Beschreibung der Kuprat-Supraleitung ein wichtiger Aspekt zu fehlen. Möglicherweise wird die Streifenordnung in Kupraten nicht einfach nur verdrängt, sondern zerfällt auch aus intrinsischen Gründen und räumt damit das Feld für das Entstehen der Supraleitung. Ein tieferes Verständnis dieses Mechanismus‘ könnte helfen, Supraleitung zu kontrollieren.

Die Studie zeigt das Potenzial, das kohärente weiche Röntgenstrahlung für die Untersuchung von Materialien hat, die räumlich uneinheitlich sind, insbesondere solche Materialien, bei denen aus dieser räumlichen Uneinheitlichkeit neue Funktionalität erwächst. Korrelationsspektroskopie mit Lasern wird seit vielen Jahrzehnten genutzt, um z.B. die Bewegung von Kolloiden in Lösungen zu studieren. Übertragen auf weiche Röntgenstrahlung lassen sich mit der Technik die Fluktuationen magnetischer und z.B. auch elektronischer und chemischer Unordnung in Raum und Zeit verfolgen.

Die hier beschriebenen Experimente wurden an der Advanced Light Source ALS, Kalifornien, durchgeführt.

Mit zukünftigen Röntgenquellen wie BESSY III, die um viele Größenordnungen intensivere kohärente Röntgenstrahlung erzeugen werden als heutige Quellen, wird es möglich werden, diese Technik auf schnellere Fluktuationen und kürzere Längenskalen auszuweiten und damit Effekte zu beobachten, die bisher nicht erreichbar sind.

Christian Schüßler-Langeheine

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Nachricht
    04.09.2024
    SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Bevor Lebensmittel verderben bilden sich meist bestimmte reaktionsfreudige Moleküle, sogenannte freie Radikale. Bisher war der Nachweis dieser Moleküle für Lebensmittelunternehmen sehr kostspielig. Ein Team aus HZB und Universität Stuttgart hat nun einen tragbaren und kostengünstigen „EPR-on-a-Chip“-Sensor entwickelt, der freie Radikale auch in geringsten Konzentrationen nachweisen kann. Nun bereitet das Team die Gründung eines Spin-off-Unternehmens vor, gefördert durch das EXIST-Forschungstransferprogramm des Bundesministeriums für Wirtschaft und Klimaschutz. Der EPRoC-Sensor soll zunächst bei der Herstellung von Olivenöl und Bier eingesetzt werden, um die Qualität dieser Produkte zu sichern.
  • "BESSY ist für Berlin von immenser Bedeutung"
    Nachricht
    02.09.2024
    "BESSY ist für Berlin von immenser Bedeutung"
    Ende August hat die Senatorin für Wissenschaft, Gesundheit und Pflege, Dr. Ina Czyborra gemeinsam mit dem Staatssekretär für Wissenschaft, Dr. Henry Marx, ihre Sommertour mit einem Besuch am HZB in Adlershof beendet. Dabei bekannte sie sich öffentlich dazu, den Neubau von BESSY III politisch zu unterstützen.