Professorship for Antonio Abate at Bielefeld University

Perovskite expert Dr Antonio Abate has accepted a call to a W2 professorship at Bielefeld University.

Perovskite expert Dr Antonio Abate has accepted a call to a W2 professorship at Bielefeld University. © privat

Dr. Antonio Abate investigates perovskite semiconductors for low-cost and highly efficient solar cells and heads a large research group at the Helmholtz Centre Berlin. Now he has accepted a W2 professorship in the Department of Chemistry at Bielefeld University.

Dr. Antonio Abate has investigated metal-organic perovskite solar cells at HZB since 2017. In 2018, he received an ERC Starting Grant to develop perovskite layers in which less problematic elements can replace environmentally harmful lead. Antonio is also working with his large international team to increase the long-term stability of perovskite materials. Antonio will offer block seminars for students at Bielefeld University.

arö

You might also be interested in

  • Rhombohedral graphite as a model for quantum magnetism
    Science Highlight
    27.09.2022
    Rhombohedral graphite as a model for quantum magnetism
    Graphene is an extremely exciting material. Now a graphene variant shows another talent: rhombohedral graphite made of several layers slightly offset from each other could enlighten the hidden physics in quantum magnets.
  • 8th World Conference on PV Energy Conversion
    News
    19.09.2022
    8th World Conference on PV Energy Conversion
    The WCPEC-8 woll take place from 26 – 30 September 2022 in the Milano Convention Centre in Milan, Italy.
    Also scientists from PVcomB will present latest results about their research work to photovoltaics.

  • New road towards spin-polarised currents
    Science Highlight
    08.09.2022
    New road towards spin-polarised currents
    The transition metal dichalcogenide (TMD) series are a family of promising candidate materials for spintronics. A study at lightsource BESSY II has unveiled that in one of those materials even simple linear polarised light is sufficient to selectively manipulate spins of different orientations. This result provides an entirely new route for the generation of spin-polarised currents and is a milestone for the development of spintronic and opto-spintronic devices.