„Grüne“ Chemie: Einblicke in die mechanochemische Synthese an BESSY II

Fein vermahlene Pulver können auch ohne Lösungsmittel  zum gewünschten Produkt reagieren. Das ist der Ansatz der Mechanochemie.

Fein vermahlene Pulver können auch ohne Lösungsmittel  zum gewünschten Produkt reagieren. Das ist der Ansatz der Mechanochemie. © F. Emmerling/BAM

In einer Kugelmühle werden die Reagenzien vermahlen, dabei kann die Bildung von neuen Produkten und Phasen über die Röntgenstrukturanalyse an BESSY II verfolgt werden.

In einer Kugelmühle werden die Reagenzien vermahlen, dabei kann die Bildung von neuen Produkten und Phasen über die Röntgenstrukturanalyse an BESSY II verfolgt werden. © F. Emmerling/BAM

In der Mechanochemie werden die Reagenzien fein gemahlen und gemischt, so dass sie sich auch ohne Lösungsmittel zum gewünschten Produkt verbinden. Durch den Verzicht auf Lösungsmittel könnte diese Technologie in Zukunft einen wichtigen Beitrag zur "grünen", umweltfreundlichen Herstellung von Chemikalien leisten. Allerdings gibt es noch große Lücken im Verständnis der Schlüsselprozesse, die bei der mechanischen Behandlung und Reaktion ablaufen. Ein internationales Team unter Leitung der Bundesanstalt für Materialforschung (BAM) hat nun an BESSY II eine Methode entwickelt, um diese Prozesse in situ mit Röntgenstreuung zu beobachten. 

Chemische Reaktionen basieren oft auf dem Einsatz von Lösungsmitteln, die die Umwelt belasten. Doch viele Reaktionen können auch ohne Lösungsmittel ablaufen. Dies ist der Ansatz der Mechanochemie, bei dem Reagenzien sehr fein gemahlen und miteinander vermischt werden, so dass sie miteinander reagieren und das gewünschte Produkt bilden.  Der mechanochemische Ansatz ist nicht nur umweltfreundlicher, sondern möglicherweise auch billiger als klassische Synthesemethoden. Die International Union of Pure and Applied Chemistry (IUPAC) zählt die Mechanochemie daher zu den 10 chemischen Innovationen, die unsere Welt verändern werden. Das volle Potenzial dieser Technologie kann jedoch erst dann ausgeschöpft werden, wenn die Vorgänge bei der mechanischen Behandlung genauer verstanden werden, so dass man sie präzise steuern und kontrollieren kann.

Doch was genau bei der mechanischen Behandlung passiert und wie die Reaktionen ablaufen, ist schwierig zu untersuchen. Traditionell wird dazu die Reaktion gestoppt und das Material zur Analyse "ex situ" aus dem Reaktor entnommen. Viele Systeme setzen ihre Umwandlung jedoch auch nach dem Stoppen des Mahlvorgangs fort. Solche Reaktionen können nur durch direkte Untersuchung der Reaktion in situ während der mechanischen Behandlung untersucht werden.

Zeitaufgelöstes in situ Monitoring

Nun hat ein internationales Team mit Dr. Adam Michalchuk und Dr. Franziska Emmerling von der Bundesanstalt für Materialforschung (BAM) sowie Teams der Universität Cambridge und der Universität Parma an der μSpot-Beamline von BESSY II eine Methode entwickelt, um in situ und während der mechanischen Behandlung Einblicke zu gewinnen.

Dazu nutzte das Team eine Kombination aus miniaturisierten Mahlbechern in Verbindung mit Innovationen in der Röntgenpulverdiffraktometrie und modernsten Analysestrategien, um die Qualität der Daten aus dem zeitaufgelösten in situ Monitoring (TRIS) deutlich zu erhöhen.

Winzigste Probenmengen

"Selbst mit außergewöhnlich kleinen Probenmengen erhalten wir eine genaue Zusammensetzung und Struktur jeder Phase im Verlauf der Reaktion", sagt Michalchuk. Sogar mit nur wenigen Milligramm waren gute Ergebnisse möglich. Darüber hinaus können sie die Kristallgröße und andere wichtige Parameter bestimmen. Diese Strategie lässt sich auf alle chemischen Spezies anwenden, ist einfach zu implementieren und liefert selbst mit einer Synchrotronquelle niedriger Energie hochwertige Beugungsdaten.

„Dies bietet einen direkten Weg zur mechanochemischen Untersuchung von Reaktionen mit knappen, teuren oder toxischen Verbindungen“, sagt Emmerling.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.