Germany on the road to net zero: a new Web Atlas shows the options

Which technical and nature-based options as well as political decisions can support Germany in being CO2-neutral? These questions are answered by the new web atlas of the Climate Service Center Germany (GERICS) at the Helmholtz-Zentrum Hereon. The new tool is aimed at politicians, experts and the public. The HZB has also contributed to the web atlas.

Since July 2019, the Helmholtz Climate Initiative is working to congregate all expertise in the Helmholtz Research Centers on climate issues. One result is a comprehensive web atlas on which Helmholtz researchers from all disciplines have contributed. The online atlas clearly presents the current state of knowledge and is constantly updated.

The content is presented in a comprehensible way and the depth of information can be freely selected so that relevant information can be found quickly and easily. Markings indicate the three information levels "Overview", "Practice", "Background".

The atlas is divided into four chapters: Technological Lever, Decision Support Lever, Roadmaps under the United Nations Framework Convention on Climate Change (UNFCCC) and Partner Centres of Net Zero-2050.

The HZB contributions are in the chapter on technological levers. Björn Rau has compiled information on building-integrated photovoltaics and Matthew Mayer has contributed to two articles on the electrochemical conversion of CO2.

Digital knowledge transfer

"The web atlas is about digital knowledge transfer," says Daniela Jacob, director of GERICS. "It acts as a showcase for the research contributions of a total of ten Helmholtz Centres that have contributed their expertise to the Net Zero 2050 project."  

"The contributions of our partners are presented in two different formats such as georeferenced maps with explanatory text or as a picture story with accompanying text," explains Swantje Preuschmann from GERICS, who heads the Web Atlas project. "On the one hand, the atlas should convey scientifically based facts, but on the other hand it should also be intuitive and playful to experience."

Triggering dialogue

The tool is intended to contribute to a broad dialogue in society and facilitate the transfer of knowledge from science to actors in politics, public administration and other "climate-relevant" decision-makers. This should help to actually make Germany CO2-neutral by the middle of this century.

Further information: https://atlas.netto-null.org

HEREON/red.

You might also be interested in

  • Tiburtius Prize for Eike Köhnen
    News
    07.12.2022
    Tiburtius Prize for Eike Köhnen
    On Tuesday, 6 December 2022, Dr. Eike Köhnen received the Tiburtius Prize (First Place) for outstanding dissertations. Eike Köhnen has contributed to significantly increasing the efficiency of tandem solar cells made of perovskite and silicon, to the point of setting world records.
  • Nanodiamonds can be activated as photocatalysts with sunlight
    Science Highlight
    30.11.2022
    Nanodiamonds can be activated as photocatalysts with sunlight
    Nanodiamond materials have potential as low-cost photocatalysts. But until now, such carbon nanoparticles required high-energy UV light to become active. The DIACAT consortium has therefore produced and analysed variations of nanodiamond materials. The work shows: If the surface of the nanoparticles is occupied by sufficient hydrogen atoms, even the weaker energy of blue sunlight is sufficient for excitation. Future photocatalysts based on nanodiamonds might be able to convert CO2 or N2 into hydrocarbons or ammonia with sunlight.
  • New monochromator optics for tender X-rays
    Science Highlight
    30.11.2022
    New monochromator optics for tender X-rays
    Until now, it has been extremely tedious to perform measurements with high sensitivity and high spatial resolution using X-ray light in the tender energy range of 1.5 - 5.0 keV. Yet this X-ray light is ideal for investigating energy materials such as batteries or catalysts, but also biological systems. A team from HZB has now solved this problem: The newly developed monochromator optics increase the photon flux in the tender energy range by a factor of 100 and thus enable highly precise measurements of nanostructured systems. The method was successfully tested for the first time on catalytically active nanoparticles and microchips.