A Wiki for Perovskite Solar Cell Research

An international team of experts has collected data on metal halide perovskite solar cells from more than 15,000 publications and developed a database with visualisation options and analysis tools. The database is open source and provides an overview of the rapidly growing knowledge as well as the open questions in this exciting class of materials. The study was initiated by HZB scientist Dr. Eva Unger and implemented and coordinated by her postdoc Jesper Jacobsson.

Halide perovskites have huge potential for solar cells and other optoelectronic applications. Solar cells based on metal-organic perovskites achieve efficiencies of more than 25 percent, they can be produced cheaply and with minimal energy consumption, but still require improvements in terms of stability and reliability. In recent years, research on this class of materials has boomed, producing a flood of results that is almost impossible to keep track of by traditional means. Under the keyword "perovskite solar", more than 19,000 publications had already been entered in the Web of Science (spring 2021).

FAIR data

Now 95 experts from more than 30 international research institutions have designed a database to systematically record findings on perovskite semiconductors. The data are prepared according to the FAIR principles, i.e. they are findable, accessible, interoperable and reusable. By reading the existing literature, the experts have collected more than 42,000 individual data sets, in which the data can be filtered and displayed according to various criteria such as material compositions or component type. Researchers from several teams at HZB were involved in this Herculean task.

New insights by AI

"Data has always been the basis of empirical science, but when data is collected in sufficiently large quantities and in a coherent way, it can be searched with modern algorithms and artificial intelligence and can provide completely new insights," says Jesper Jacobsson, coordinator of this project.

Interactive tools, easy uploads

The database provides analysis tools and graphical data visualizations that enable easy and interactive exploration, and also offers the option to easily upload new data from new peer-reviewed publications. "It's a wiki for perovskite solar cell research," says Eva Unger, counting on the participation of the research community: "In the future, this type of research data platform will offer us the opportunity to make our research data public according to FAIR principles in addition to established publication formats."

Not only science, but also industry will benefit: The database provides an overview of the current state of knowledge, while also uncovering gaps in knowledge from which new productive research questions can arise.


You might also be interested in

  • Nanodiamonds can be activated as photocatalysts with sunlight
    Science Highlight
    Nanodiamonds can be activated as photocatalysts with sunlight
    Nanodiamond materials have potential as low-cost photocatalysts. But until now, such carbon nanoparticles required high-energy UV light to become active. The DIACAT consortium has therefore produced and analysed variations of nanodiamond materials. The work shows: If the surface of the nanoparticles is occupied by sufficient hydrogen atoms, even the weaker energy of blue sunlight is sufficient for excitation. Future photocatalysts based on nanodiamonds might be able to convert CO2 or N2 into hydrocarbons or ammonia with sunlight.
  • New monochromator optics for tender X-rays
    Science Highlight
    New monochromator optics for tender X-rays
    Until now, it has been extremely tedious to perform measurements with high sensitivity and high spatial resolution using X-ray light in the tender energy range of 1.5 - 5.0 keV. Yet this X-ray light is ideal for investigating energy materials such as batteries or catalysts, but also biological systems. A team from HZB has now solved this problem: The newly developed monochromator optics increase the photon flux in the tender energy range by a factor of 100 and thus enable highly precise measurements of nanostructured systems. The method was successfully tested for the first time on catalytically active nanoparticles and microchips.
  • Tomography shows high potential of copper sulphide solid-state batteries
    Science Highlight
    Tomography shows high potential of copper sulphide solid-state batteries
    Solid-state batteries enable even higher energy densities than lithium-ion batteries with high safety. A team led by Prof. Philipp Adelhelm and Dr. Ingo Manke succeeded in observing a solid-state battery during charging and discharging and creating high-resolution 3D images. This showed that cracking can be effectively reduced through higher pressure.