International research at BESSY II continued even in the corona year 2021

In 2021, our users at BESSY II came from 34 countries.

In 2021, our users at BESSY II came from 34 countries. © HZB

2021 was not an easy year for international research: owing to lockdowns and travel bans, science was hit hard by the pandemic situation. Nevertheless, experiments continued at a high level at the BESSY II light source in Berlin Adlershof – thanks in part to new remote service offers. Here are the figures at a glance.

“It makes us happy that BESSY II was dependably available to researchers for around 6000 hours despite the difficult conditions,” says Dr. Antje Vollmer, Head of User Coordination at HZB. The light generated at BESSY II is directed through 25 beamlines to 37 experimental stations. Thus, altogether, light was available for nearly 150,000 hours of research at all the beamlines. This light is used for experiments in many fields, including physics, chemistry and the life sciences. 

47 percent of user groups from abroad

As was to be expected, given that travel had to be limited, COVID-19 left a dip in user visits in 2021. “We counted just under 1400 visits from users last year. What surprised us, in view of the tense situation, was that 30 percent of the user groups came from other European countries and 17 percent were from non-European countries,” reports Antje Vollmer. “In total, we had user groups from 34 countries, which is an astonishing number.”

The fact that researchers from abroad conducted their experiments at BESSY II even in the corona year 2021 underlines the attractiveness of the photon source and the experimental stations, some of which are unique worldwide. “It also shows that the users here are very well looked after by dedicated scientists at the experimental stations and are happy to come back.”

New remote services at BESSY II

To ensure that research could continue despite the travel bans, new remote services were offered at many experimental stations. Users submitted samples and took part in their experiments virtually. “Our beamline supervisors organised this service at very short notice to ensure that socially relevant research could continue wherever possible,” says Vollmer. A total of 27 percent of all experiments were conducted remotely or with remote participation. 

The figures at a glance

  • 1400 visiting user groups from 34 countries
  • 67 percent of measurement time for external research projects
  • 30 percent of user groups from other European countries
  • 17 percent of user groups from non-European countries
  • 6000 hours available for research at BESSY II
  • 37 experimental stations provided with light (via 25 beamlines)

Altmetric highlights at BESSY II

Altmetric measures the attention that scientific publications attract on the Internet. It counts how many times the online link (doi) to a specialist publication is posted on Twitter, Reddit, Mendeley, blogs and forums. For topics in physics, an Altmetric score above 100 is considered unusual.

The three BESSY-related short news items that got the highest Altmetric scores (2021) are:

sz


You might also be interested in

  • Spintronics at BESSY II: Domain walls in magnetic nanowires
    Science Highlight
    02.06.2023
    Spintronics at BESSY II: Domain walls in magnetic nanowires
    Magnetic domains walls are known to be a source of electrical resistance due to the difficulty for transport electron spins to follow their magnetic texture. This phenomenon holds potential for utilization in spintronic devices, where the electrical resistance can vary based on the presence or absence of a domain wall. A particularly intriguing class of materials are half metals such as La2/3Sr1/3MnO3 (LSMO) which present full spin polarization, allowing their exploitation in spintronic devices. Still the resistance of a single domain wall in half metals remained unknown. Now a team from Spain, France and Germany has generated a single domain wall on a LSMO nanowire and measured resistance changes 20 times larger than for a normal ferromagnet such as Cobalt.
  • Graphene on titanium carbide triggers a novel phase transition
    Science Highlight
    25.05.2023
    Graphene on titanium carbide triggers a novel phase transition
    Researchers have discovered a Lifshitz-transition in TiC, driven by a graphene overlayer, at the photon source BESSY II. Their study sheds light on the exciting potential of 2D materials such as graphene and the effects they can have on neighboring materials through proximity interactions.
  • How much cadmium is contained in cocoa beans?
    Science Highlight
    06.04.2023
    How much cadmium is contained in cocoa beans?
    Cocoa beans can absorb toxic heavy metals such as cadmium from the soil. Some cultivation areas, especially in South America, are polluted with these heavy metals, in some cases considerably. In combining different X-ray fluorescence techniques, a team at BESSY II has now been able to non-invasively measure for the first time where cadmium accumulates exactly in cocoa beans: Mainly in the shell. Further investigations show that the processing of the cocoa beans can have a great influence on the concentration of heavy metals.