Standard-Silizium-Solarzellen erstmals mit Perowskit zu Tandem kombiniert

Auf einer Standard-Silizium-Zelle hat das HZB-Team eine Perowskit-Topzelle aufgebracht. Diese Tandem-Solarzelle könnte mit weiteren Optimierungen hohe Wirkungsgrade erreichen. 

Auf einer Standard-Silizium-Zelle hat das HZB-Team eine Perowskit-Topzelle aufgebracht. Diese Tandem-Solarzelle könnte mit weiteren Optimierungen hohe Wirkungsgrade erreichen.  © Silvia Mariotti / HZB

Das Schema illustriert einen Querschnitt durch eine Perowskit-POLO-PERC-Tandem-Solarzelle.

Das Schema illustriert einen Querschnitt durch eine Perowskit-POLO-PERC-Tandem-Solarzelle. © HZB

Im HySPRINT-Labor am HZB werden Perowskit-Materialien für Solarzellen stetig weiter optimiert.

Im HySPRINT-Labor am HZB werden Perowskit-Materialien für Solarzellen stetig weiter optimiert. © Michael Setzpfand/HZB

Die Massenfertigung von Silizium-Solarzellen nutzt so genannte PERC-Zellen, sie gelten als „Arbeitspferde“ der Photovoltaik. Nun haben zwei Teams vom HZB und dem Institut für Solarenergie-Forschung in Hameln (ISFH) gezeigt, dass solche Standard-Silizium-Zellen als Basis für Tandemzellen mit Perowskit-Topzellen geeignet sind. Aktuell liegt der Wirkungsgrad der Tandemzelle zwar noch unterhalb dem von optimierten PERC-Zellen allein, könnte aber durch gezielte Optimierungen rasch auf bis zu 29,5 % gesteigert werden. Die Forschung wurde im Rahmen eines Verbundprojekts durch das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) gefördert.

Tandemzellen aus Silizium und Perowskit sind in der Lage, das breite Energiespektrum des Sonnenlichts effizienter in elektrische Energie umzuwandeln als die jeweiligen Einzel-Zellen. Nun ist es zwei Teams vom HZB und dem ISFH Hameln erstmals gelungen, eine Perowskit-Topzelle mit einer so genannten PERC/POLO-Silizium-Zelle zu einem Tandem-Bauelement zu kombinieren. Das Besondere: PERC-Silizium-Zellen auf p-typ Silizium sind das „Arbeitspferd“ der Photovoltaik, mit einem Marktanteil von mehr als  50 %  aller weltweit produzierten Solarzellen. Sie sind weitgehend optimiert, temperatur- und langzeitstabil. Deshalb ist es für die Kommerzialisierung einer Perowskit-Silizium Tandem-Technologie besonders interessant, ein „Perowskit-Tandem-Upgrade“ für PERC-Zellen zu entwickeln. Die Kooperation fand im Rahmen des Verbundprojekts P3T statt, das vom Bundesministerium für Wirtschaft und Klimaschutz finanziert und vom HZB koordiniert wird.

Das Team am ISFH hat für den Rückseiten-Kontakt der Silizium-Bottomzellen einen industriekompatiblen PERC-Prozess genutzt. Auf der Vorderseite des Wafers kam mit dem sogenannten POLO Kontakt eine weitere industrialisierbare Technologie zum Einsatz, die hier für die kleinflächigen proof of concept-Zellen angepasst wurde.

Die weiteren Prozess-Schritte fanden am HZB statt: Eine zinndotierte Indiumoxid-Rekombinationsschicht wurde als Kontakt zwischen den beiden Teilzellen aufgebracht. Darauf wurde eine Perowskit-Zelle mit einer Schichtfolge prozessiert, die der in der aktuellen HZB-Weltrekord-Tandem-Zelle auf n-typ Silizium-Heterojunction-Zellen ähnelt. Die ersten so produzierten Perowskit-PERC/POLO Tandemzellen erreichen auf einer aktiven Zell-Fläche von ca. 1 cm² einen Wirkungsgrad von 21,3 %. Dieser Wirkungsgrad liegt in dieser Machbarkeitsstudie also noch unterhalb des Wirkungsgrads von optimierten PERC-Zellen. „Erste experimentelle Ergebnisse und optische Simulationen deuten aber darauf hin, dass wir die Leistung durch Prozess- und Schichtoptimierung erheblich verbessern können“, erklärt Dr. Lars Korte, der korrespondierende Autor der Studie.

Potenzieller Wirkungsgrad: 29,5 %

Die Expert*innen schätzen das Potenzial für den Wirkungsgrad (Fachbegriff PCE für Power Conversion Efficiency) dieser Perowskit/Silizium-Tandemsolarzellen mit PERC-ähnlicher Unterzellentechnologie auf 29,5 %. Erste Schritte zur weiteren Steigerung sind bereits im Blick: Dr. Silvia Mariotti aus dem HZB Team hatte die Bedeckung der Silizium-Oberfläche durch den Perowskiten als Verbesserungspotential identifiziert: „Man könnte dazu die Oberfläche der Silizium Wafer anpassen und so rasch die Effizienz auf ca. 25% steigern“, sagt Mariotti. Das liegt dann bereits deutlich über der Effizienz von PERC-Einzel-Zellen.

arö

Das könnte Sie auch interessieren

  • Tiburtius-Preis für Eike Köhnen
    Nachricht
    07.12.2022
    Tiburtius-Preis für Eike Köhnen
    Am Dienstag, den 6.12.2022 erhielt Dr. Eike Köhnen den Tiburtius-Preis (Erster Platz) für seine herausragende Dissertation. Eike Köhnen hat dazu beigetragen, den Wirkungsgrad von Tandemsolarzellen aus Perowskit und Silizium deutlich zu steigern, bis hin zu Weltrekord-Werten.
  • Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Science Highlight
    30.11.2022
    Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Nanodiamant-Materialien besitzen Potenzial als preisgünstige Photokatalysatoren. Doch bisher benötigten solche Kohlenstoff-Nanopartikel energiereiches UV-Licht, um aktiv zu werden. Das DIACAT-Konsortium hat daher Variationen von Nanodiamant-Materialien hergestellt und analysiert. Die Arbeit zeigt: Wenn die Oberfläche der Nanopartikel mit ausreichend Wasserstoff-Atomen besetzt ist, reicht auch die schwächere Energie von Licht im sichtbaren Bereich für die Anregung aus. Photokatalysatoren auf Basis von Nanodiamanten könnten in Zukunft mit Sonnenlicht CO2 oder N2 in Kohlenwasserstoffe oder Ammoniak umwandeln.
  • Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Science Highlight
    30.11.2022
    Neue Monochromatoroptiken für den „tender“ Röntgenbereich
    Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.