Unravelling tautomeric mixtures: RIXS at BESSY II allows to see clearly

The illustration visualises the experimental method, here on the prototypical keto-enol equilibrium. It appears on the cover of “The Journal of Physical Chemistry Letters”.

The illustration visualises the experimental method, here on the prototypical keto-enol equilibrium. It appears on the cover of “The Journal of Physical Chemistry Letters”. © Martin Künsting / HZB

A team at HZB has developed a method of experimentally unravelling tautomeric mixtures. Based on resonant inelastic X-ray scattering (RIXS) at BESSY II, not only proportions of the tautomers can be deduced, but the properties of each individual tautomer can be studied selectively. This method could yield to detailed information on the properties of molecules and their biological function. In the present study, now advertised on the cover of “The Journal of Physical Chemistry Letters” the technique was applied to the prototypical keto-enol equilibrium.

Many (organic) molecules exist as a mixture of two almost identical molecules, with the same molecular formula but one important difference: A single hydrogen atom sits in a different position. The two isomeric forms transform into each other, creating a delicate equilibrium, a "tautomeric" mixture. Many amino acids are tautomeric mixtures, and since they are building blocks of proteins, they may influence their shape and function and thus their biological functions in organisms.

Until now: Mission impossible

Until now, it has been impossible to selectively investigate the electronic structure of such tautomeric mixtures experimentally: Classical spectroscopic methods “see” only the sum of the signals of each molecular forms - the details of the properties of the two individual tautomers cannot be determined.

Now at BESSY II: it works

A team led by HZB physicist Prof. Alexander Föhlisch has now succeeded in providing a method of experimentally unravelling tautomeric mixtures. Using inelastic X-ray scattering (RIXS) and a data processing/evaluation method newly developed at HZB, the individual proportions of the tautomers can be clearly deduced from the measured data. "We can experimentally separate the signal of each individual molecule in the mixture by X-ray scattering, which leads to a detailed insight into their functionality and chemical properties," says Dr. Vinicíus Vaz Da Cruz, first author of the paper and postdoc in Föhlisch's team.

"Specifically, we measure a pure spectrum of each tautomer, taking advantage of the element specificity and site selectivity of the method," Vaz Da Cruz explains. This allowed them to fully characterise the components in the tautomer mixture.

New insights into biological processes

In the present study, the technique was applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. The data were obtained at the EDAX terminal station at BESSY II.

These results provide experimental evidence for concepts that have previously only been discussed theoretically in the literature. They are particularly interesting to enlighten and understand important biological processes such as the interaction between nucleoid bases of the DNA, metabolic conversion of fructose into glucose, or the folding of proteins.

arö


You might also be interested in

  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.
  • BESSY II: Molecular orbitals determine stability
    Science Highlight
    07.02.2024
    BESSY II: Molecular orbitals determine stability
    Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.