Fermi-Bögen in Antiferromagneten an BESSY II entdeckt

An BESSY II konnte die Fermi-Oberfläche von antiferromagnetischem NdBi gemessen werden. Dabei zeigten sich so genannte Fermi-Bögen.

An BESSY II konnte die Fermi-Oberfläche von antiferromagnetischem NdBi gemessen werden. Dabei zeigten sich so genannte Fermi-Bögen. © https://www.nature.com/articles/s41586-022-04412-x.

Eine internationale Kooperation hat Proben von NdBi-Kristallen untersucht, die interessante magnetische Eigenschaften aufweisen. Bei ihren Experimenten, darunter Messungen an BESSY II, konnten sie Hinweise auf so genannte Fermi-Bögen im antiferromagnetischen Zustand der Probe bei tiefen Temperaturen finden. Diese Beobachtung wird durch bestehende theoretische Vorstellungen noch nicht erklärt und eröffnet faszinierende Möglichkeiten, diese Art von Materialien für innovative Informationstechnologien zu nutzen, die auf Spins statt auf Elektronen basieren.

Neodym-Bismut-Kristalle gehören zur breiten Palette von Materialien mit interessanten magnetischen Eigenschaften. Die Fermi-Fläche, die in den Experimenten gemessen wird, enthält Informationen über die Transporteigenschaften der Ladungsträger im Kristall. Während die Fermi-Fläche normalerweise aus geschlossenen Konturen besteht, sind unzusammenhängende Abschnitte, die als Fermi-Bögen bezeichnet werden, sehr selten und können Anzeichen für ungewöhnliche elektronische Zustände sein.

Ungewöhnliche Aufspaltung

In einer Studie, die jetzt in Nature veröffentlicht wurde, präsentiert das Team experimentelle Beweise für solche Fermi-Bögen. Sie beobachteten eine ungewöhnliche magnetische Aufspaltung im antiferromagnetischen Zustand der Proben unterhalb einer Temperatur von 24 Kelvin (der Néel-Temperatur). Diese Aufspaltung erzeugt Bänder mit entgegengesetzter Krümmung, die sich mit der Temperatur zusammen mit der antiferromagnetischen Ordnung ändern.

Diese Beobachtung ist sehr wichtig, weil sie sich von den bisher theoretisch betrachteten und experimentell beobachteten Fällen magnetischer Aufspaltungen fundamental unterscheidet. Bei den bisher bekannten Zeeman- und Rashba-Aufspaltungen bleibt die Krümmung der Bänder immer erhalten. Da beide genannten Effekte für die Spintronik wichtig sind, könnten die aktuellen Erkenntnisse zu neuen Anwendungen führen, zumal sich das Augenmerk bei der Spintronikforschung derzeit von traditionell ferromagnetischen hin zu antiferromagnetischen Materialien bewegt.

arö

Das könnte Sie auch interessieren

  • HZB-Physiker folgt Ruf nach Südkorea
    Nachricht
    25.01.2023
    HZB-Physiker folgt Ruf nach Südkorea
    Seit 2016 hat der Beschleunigerphysiker Ji-Gwang Hwang am HZB in der Abteilung Speicherring- und Strahlphysik geforscht. In mehreren Projekten hat er wichtige Beiträge zur Strahldiagnostik geleistet. Nun kehrt er in seine Heimat Südkorea zurück, als Professor für Physik an der Gangneung-Wonju National University.
  • Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Science Highlight
    18.01.2023
    Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Ein Wissenschaftsteam unter Leitung von Forschenden des Max-Born-Instituts in Berlin, des Helmholtz-Zentrums Berlin, des Brookhaven National Laboratory (USA) und des Massachusetts Institute of Technology (USA) hat eine neue Methode entwickelt, um mit starken Röntgenquellen Videos von Fluktuationen in Materialien auf der Nanoskala aufzunehmen. Die Methode ist in der Lage, scharfe, hochauflösende Bilder zu machen, ohne das Material durch zu starke Belichtung zu beeinträchtigen. Dafür entwickelten die Wissenschaftler*innen einen Algorithmus, der in unterbelichteten Aufnahmen Muster erkennen kann. Im Fachjournal Nature beschreiben sie die Methode des Coherent Correlation Imaging (CCI) und stellen Ergebnisse für Proben aus dünnen magnetischen Schichten vor.
  • Lesetipp: Bunsen-Magazin mit Schwerpunkt Wasserforschung
    Nachricht
    13.01.2023
    Lesetipp: Bunsen-Magazin mit Schwerpunkt Wasserforschung
    Wasser besitzt nicht nur einige bekannte Anomalien, sondern steckt noch immer voller Überraschungen. Die erste Ausgabe 2023 des Bunsen-Magazins widmet sich der molekularen Wasserforschung, vom Ozean bis zu Prozessen bei der Elektrolyse. Das Heft präsentiert Beiträge von Forschenden, die im Rahmen einer europäischen Forschungsinitiative im „Centre for Molecular Water Science“ (CMWS) kooperieren. Ein Team am HZB stellt darin Ergebnisse aus der Synchrotronspektroskopie von Wasser vor. Denn an modernen Röntgenquellen lassen sich molekulare und elektronische Prozesse in Wasser im Detail untersuchen.