Solar hydrogen: Better photoelectrodes through flash heating

Pulsed laser deposition: An intense laser pulse hits a target containing the material, tranforming it into a  plasma which is then deposited as a thin film onto a substrate.

Pulsed laser deposition: An intense laser pulse hits a target containing the material, tranforming it into a  plasma which is then deposited as a thin film onto a substrate. © R. Gottesman/HZB

Producing low-cost metal-oxide thin films with high electronic quality for solar water splitting is not an easy task. Especially since quality improvements of the upper metal oxide thin films need thermal processing at high temperatures, which would melt the underlying glass substrate. Now, a team at HZB-Institute for Solar Fuels has solved this dilemma: A high intensity and rapid light pulse directly heats the semiconducting metal-oxide thin film, allowing to achieve the optimal heating conditions without damaging the substrate.

Solar energy can directly drive electrochemical reactions at the surface of photoelectrodes. Photoelectrodes consist of semiconducting thin films on transparent conductive-glass substrates that convert light into electricity. Most photoelectrochemical studies have focused on water splitting, a thermodynamically uphill reaction that could offer an attractive pathway for the long-term capture and storage of solar energy by producing 'green' hydrogen.

Metal-oxide thin film photoelectrodes are particularly interesting for these diverse functions. They comprise abundant elements, potentially offering infinite tunability to achieve the desired properties – at potentially low costs.

Made from plasma

At the HZB Institute for Solar Fuels, several teams focus on developing such photoelectrodes. The usual method to produce them is pulsed laser deposition: an intense laser pulse hits a target containing the material and ablates it into a highly energetic plasma deposited on a substrate.

Quality needs heat

Further steps are needed to improve the quality of the deposited thin film. In particular thermal processing of the metal-oxide thin-film reduces defects and imperfections. However, this creates a dilemma: Reducing atomic defects concentration and improvements in crystalline order of the metal-oxide thin films would require thermal processing temperatures between 850 and 1000 degrees Celsius - but the glass substrate melts already at 550 degrees Celsius.

Flash-heating the thin film

Dr. Ronen Gottesman from the HZB Institute for Solar Fuels has now solved this problem: After deposition, using high-powered lamps, he flash-heats the metal-oxide thin film. This heats it up to 850 degrees Celsius without melting the underlying glass substrate.

"The heat efficiently reduces structural defects, trap states, grain boundaries, and phase impurities, which would become more challenging to mitigate with an increasing number of elements in the metal-oxides. Therefore, new innovative synthesis approaches are essential. We have now demonstrated this on photoelectrodes made of Ta2O5, TiO2, and WO3, which we heated to 850 °C without damaging the substrates," says Gottesman.

Record performance for α-SnWO4

The new method was also successful with a photoelectrode material that is considered a very good candidate for solar water splitting: α-SnWO4. Conventional furnace heating leaves behind phase impurities. Rapid thermal processing (RTP) heating improved crystallinity, electronic properties, and performance, leading to a new record performance of 1 mA/cm2 for this material, higher by 25% than the previous record.

"This is also interesting for the production of quantum dots or halide perovskites, which are also temperature-sensitive," explains Gottesman.

arö

  • Copy link

You might also be interested in

  • Rutger Schlatmann re-elected as ETIP PV Chair
    News
    24.10.2024
    Rutger Schlatmann re-elected as ETIP PV Chair
    The ETIP PV Steering Committee elected a new Chair, as well as two Vice-Chairs for the term 2024 – 2026. Rutger Schlatmann, head of the division Solar Energy at the HZB, and professor at HTW Berlin, was re-elected as the ETIP PV Chair.
  • Perovskite solar cells: TEAM PV develops protocols to ensure reproducibility
    News
    22.10.2024
    Perovskite solar cells: TEAM PV develops protocols to ensure reproducibility
    Ten teams at Helmholtz-Zentrum Berlin are building a long-term international alliance to converge practices and develop reproducibility in perovskite materials. The TEAM PV project is funded by the Federal Ministry of Education and Research (BMBF), Germany.
  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed together with Freiberg Instruments an innovative monochromator that is now being produced and marketed. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.