Ultraschneller Röntgenblick in die elektronische Struktur von Photosäuren

Simulierte Änderungen der Ladungsverteilung der APTS-Photosäure und der konjugierten Photobase, die in Änderungen der Mulliken-Ladungen und des elektrischen Dipolmoments bei elektronischer Anregung resultieren.

Simulierte Änderungen der Ladungsverteilung der APTS-Photosäure und der konjugierten Photobase, die in Änderungen der Mulliken-Ladungen und des elektrischen Dipolmoments bei elektronischer Anregung resultieren. © MBI

F&ouml;rster-Zyklus einer Amin-Photos&auml;ure mit den elektronischen Grundzust&auml;nden S<sub>0</sub> und den ersten angeregten Zust&auml;nden S<sub>1</sub> der sauren (links) und basischen (rechts) Spezies. Die vier Stadien des Photos&auml;ureverhaltens in w&auml;ssriger L&ouml;sung sind schematisch dargestellt. In der Mitte sind transiente Weichr&ouml;ntgenspektren dargestellt, die an 8-Aminopyren-1,3,6-trisulfonat (APTS) gemessen wurden.

Förster-Zyklus einer Amin-Photosäure mit den elektronischen Grundzuständen S0 und den ersten angeregten Zuständen S1 der sauren (links) und basischen (rechts) Spezies. Die vier Stadien des Photosäureverhaltens in wässriger Lösung sind schematisch dargestellt. In der Mitte sind transiente Weichröntgenspektren dargestellt, die an 8-Aminopyren-1,3,6-trisulfonat (APTS) gemessen wurden. © MBI

Photosäuren sind Moleküle, die nach elektronischer Anregung ein Proton freisetzen und so den Säuregrad einer Flüssigkeit erhöhen. Die Pionierarbeit von Theodor Förster hat für solche Moleküle die direkte Beziehung zwischen der Wellenlänge der optischen Absorption und den Säureeigenschaften aufgezeigt, mit der die Erhöhung des Säuregrades im ersten elektronisch angeregten Zustand quantifiziert werden kann. Zugrundeliegende vollständige Beschreibungen der mikroskopischen Effekte die das Photosäure-Phänomen erklären sind jedoch seither spärlich geblieben. Ultraschnelle Röntgenspektroskopie, bei der die elektronische Struktur einer protonenliefernden Gruppe einer aromatischen Amin-Photosäure lokal untersucht wird, hat nun einen direkten Einblick in die Veränderungen der elektronischen Struktur ermöglicht. Die seit langem offene Frage nach der Photoazidität ist nun endlich geklärt: Die wichtigsten elektronischen Strukturänderungen finden auf der Basenseite des sogenannten Förster-Zyklus statt, während die Säureseite eine untergeordnete Rolle spielt. 

Photosäuren sind seit mehr als 70 Jahren bekannt. Theodor Förster war der erste, der die Beobachtungen der Absorptions- und Fluoreszenzspektren von Photosäuren korrekt beschrieb und die Positionen der elektronischen Übergänge, die zu optischen Absorptionsbanden führen, mit den erhöhten Säureeigenschaften von Photosäuren im elektronisch angeregten Zustand in Verbindung brachte. In den folgenden Jahrzehnten wurden zahlreiche Forschungsarbeiten durchgeführt, doch abgesehen von quantenchemischen Berechnungen von Photosäuremolekülen mittlerer Größe, die sich auf die intramolekularen elektronischen Ladungsverteilungsänderungen der protonenliefernden Anteile von Fotosäuren konzentrierten, blieben die mikroskopischen Erkenntnisse begrenzt. Einige dieser Studien haben - in Übereinstimmung mit früheren Vorschlägen, die auf physikalisch-organischen Prinzipien beruhen - gezeigt, dass die Auswirkungen der elektronischen Anregung auf der konjugierten Photobasenseite des Förster-Zyklus viel ausgeprägter sind (Abb. 2).

Wissenschaftler des Max-Born-Instituts in Berlin, der Universität Stockholm, der Universität Hamburg, des Helmholtz-Zentrums Berlin, der Ben-Gurion Universität des Negev in Beersheva und der Universität Uppsala haben nun erfolgreich einen neuartigen kombinierten experimentellen und theoretischen Ansatz verfolgt, um die elektronischen Ladungsverteilungen von Photosäuren entlang der vier Stadien der Photosäuren zu untersuchen, die einen direkten mikroskopischen Einblick in die elektronischen Strukturänderungen der protonenspendenden Amingruppe eines Aminopyren-Derivats in wässriger Lösung ermöglichen. Die K-Kanten-Röntgenabsorptionsspektren der Stickstoffatome des Moleküls wurden am Synchrotron BESSY II im Transmissionsmodus gemessen, um die elektronische Struktur auf ultrakurzen Zeitskalen lokal zu untersuchen. Zusammen mit quantenchemischen Berechnungen ergeben diese Ergebnisse ein konsistentes Bild des Photosäureverhaltens die in Abb. 1 dargestellt sind: Die Änderung der elektronischen Ladungsverteilungen der protonenspendenden Gruppe im angeregten Zustand sind auf der Photosäureseite nur gering, wobei sie auf der konjugierten Photobasenseite erheblich stärker ausfallen. Die Änderung des Gesamtdipolmoments des gesamten Moleküls ist jedoch ebenso wichtig wie die Änderungen der lokalen Ladungsverteilung, so dass die Solvatationsdynamik durch das Lösungsmittel Wasser der zweite wichtige Faktor ist, der die Stärke einer Photosäure bestimmt.

MBI

Das könnte Sie auch interessieren

  • Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Science Highlight
    16.03.2023
    Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.
  • Super-Energiespeicher: Ladungstransport in MXenen untersucht
    Science Highlight
    13.03.2023
    Super-Energiespeicher: Ladungstransport in MXenen untersucht
    MXene können große Mengen elektrischer Energie speichern und lassen sich dabei sehr schnell auf- und entladen. Damit vereinen MXene die Vorteile von Batterien und Superkondensatoren und gelten als spannende neue Materialklasse für die Energiespeicherung: Das Material ist wie eine Art Blätterteig aufgebaut, die MXene-Schichten sind durch dünne Wasserfilme getrennt. Ein Team am HZB hat nun an der Röntgenquelle BESSY II untersucht, wie Protonen in diesen Wasserfilmen wandern und den Ladungstransport ermöglichen. Ihre Ergebnisse sind in der renommierten Fachzeitschrift Nature Communications veröffentlicht und könnten die Optimierung solcher Energiespeichermaterialien beschleunigen.
  • Elektrokatalyse unter dem Rasterkraftmikroskop
    Science Highlight
    09.03.2023
    Elektrokatalyse unter dem Rasterkraftmikroskop
    Eine Weiterentwicklung der Rasterkraftmikroskopie macht es nun möglich, das Höhenprofil nanometerfeiner Strukturen sowie den elektrischen Strom und die Reibungskraft an fest-flüssig Grenzflächen zeitgleich abzubilden. Damit gelang es einem Team am Helmholtz-Zentrum Berlin (HZB) sowie am Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft, elektrokatalytisch aktive Materialien zu analysieren und Einblicke zu gewinnen, die für die Katalysatoroptimierung hilfreich sind. Die Methode eignet sich darüber hinaus auch, um Prozesse an Batterieelektroden, bei der Photokatalyse oder an aktiven Biomaterialien zu untersuchen.