Zu Gast am HZB: Humboldt-Forschungspreisträger Alexei Gruverman

Humboldt-Preisträger Professor Alexei Gruverman ist für einige Zeit am IFOX-Institut des HZB zu Gast.

Humboldt-Preisträger Professor Alexei Gruverman ist für einige Zeit am IFOX-Institut des HZB zu Gast. © privat

Professor Alexei Gruverman wurde im Oktober 2020 mit einem Humboldt-Forschungspreis ausgezeichnet. Wegen der COVID-Pandemie konnte er erst in diesem Jahr nach Deutschland reisen und ist nun für einige Monate zu Gast am Institut "Funktionale Oxide für energieeffiziente Informationstechnologie" am Helmholtz-Zentrum Berlin.

Die renommierte, mit 60.000 Euro dotierte Auszeichnung wird jährlich von der Alexander von Humboldt-Stiftung an herausragende Wissenschaftlerinnen und Wissenschaftler aus dem Ausland verliehen, um Kooperationsprojekte mit Forschenden in Deutschland zu fördern.

"Wir freuen uns, Alexei Gruverman am HZB zu begrüßen. Er ist ein weltweit führender Wissenschaftler auf dem Gebiet der nanoskaligen Ferroelektrika. Wir werden unsere Zusammenarbeit mit ihm in mehreren Themenbereichen weiter ausbauen", sagt Prof. Catherine Dubourdieu, Leiterin des Instituts "Funktionale Oxide für energieeffiziente Informationstechnologie" am HZB. 

Professor Alexei Gruverman ist Charles-Bessey-Professor am Department of Physics and Astronomy der Universität Nebraska-Lincoln, USA. Seine Forschungsinteressen reichen von statischen und dynamischen Eigenschaften von Eisenwerkstoffen im Nanobereich über elektronische Eigenschaften von polaren Oberflächen bis hin zu elektromechanischen Eigenschaften von Biomaterialien.

Der Humboldt-Forschungspreis würdigt seine herausragenden Forschungsleistungen bei der Untersuchung von physikalischen Phänomenen im Nanobereich in einer Vielzahl von Materialien unter Verwendung verschiedener Methoden der Rastersondenmikroskopie (SPM). Gruverman leistete Pionierarbeit bei der Entwicklung der Piezokraftmikroskopie (PFM), mit der sich nanoskalige Eigenschaften ferroelektrischer Materialien und Strukturen untersuchen lassen. Zu seinen wissenschaftlichen Errungenschaften zählen die Manipulation ferroelektrischer Domänen im Nanomaßstab, die Entwicklung eines Ansatzes für die schnelle Schaltdynamik in ferroelektrischen Kondensatoren, der Nachweis des Tunnel-Elektrowiderstandseffekts in Ferroelektrika und die Untersuchung des elektromechanischen Verhaltens biologischer Systeme im Nanomaßstab. Zu seinen aktuellen Forschungsthemen gehören die Entstehung der ferroelektrischen Ordnung in elektronischen 2D-Materialien und die Erforschung des physikalischen Mechanismus ihrer polarisationsgekoppelten Transporteigenschaften.

Gruverman wird diesen ersten mit dem Humboldt-Forschungspreis verbundenen Aufenthalt in Deutschland am HZB in Berlin und am NamLab in Dresden verbringen.

Institute Functional Oxides for Energy-Efficient IT

Das könnte Sie auch interessieren

  • Europäische Pilotlinie für innovative Tandem-Solarzellen
    Nachricht
    23.11.2022
    Europäische Pilotlinie für innovative Tandem-Solarzellen
    PEPPERONI ist ein vierjähriges Forschungs- und Innovationsprojekt, das im Rahmen von Horizon Europe kofinanziert und gemeinsam vom Helmholtz-Zentrum Berlin und Qcells koordiniert wird. Das Projekt wird dazu beitragen, die Markteinführung und Massenproduktion von Perowskit/Silizium-Tandem-Photovoltaik-Technologien voranzubringen.

  • Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Science Highlight
    22.11.2022
    Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.
  • Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Science Highlight
    17.11.2022
    Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Photoelektroden auf der Basis von BiVO4 gelten als Top-Kandidaten für die solare Wasserstofferzeugung. Doch was passiert eigentlich, wenn sie mit Wassermolekülen in Kontakt kommen? Eine Studie im Journal of the American Chemical Society hat diese entscheidende Frage nun teilweise beantwortet: Überschüssige Elektronen aus dotierten Fremdelementen oder Defekten fördern die Dissoziation von Wasser, was wiederum sogenannte Polaronen an der Oberfläche stabilisiert. Dies zeigen Daten aus Experimenten eines HZB-Teams an der Advanced Light Source des Lawrence Berkeley National Laboratory. Die Ergebnisse könnten dazu beitragen, bessere Photoanoden für die grüne Wasserstoffproduktion zu entwickeln.