HZB hosts Humboldt Research Award Winner Alexei Gruverman

An award by Humboldt-foundation enables Professor Alexei Gruverman to visit the HZB institute "Functional oxides for energy efficient information technology". 

An award by Humboldt-foundation enables Professor Alexei Gruverman to visit the HZB institute "Functional oxides for energy efficient information technology".  © privat

Professor Alexei Gruverman was granted a Humboldt Research Award in October 2020.  Due to the COVID pandemic, he could not travel until this year. For a few months he is now hosted by Helmholtz-Zentrum Berlin at the Institute “Functional oxides for energy efficient information technology”. 

The renowned award is endowed with 60 000 Euros and is presented annually by the Alexander von Humboldt Foundation to outstanding scientists from abroad to support collaborative projects with researchers in Germany.

“We are very much honored and happy to welcome Alexei Gruverman at the HZB. He is a worldwide leading scientist in the field of nanoscale ferroelectrics. We will further develop our cooperation with him on several topics”, says Prof. Catherine Dubourdieu, head of the institute “Functional oxides for energy efficient information technology” at HZB.  

Professor Alexei Gruverman is a Charles Bessey Professor at the Department of Physics and Astronomy, University of Nebraska-Lincoln, USA. His research includes diverse scientific subjects from nanoscale static and dynamic properties of ferroic materials, to electronic properties of polar surfaces, and electromechanical properties of biomaterials.

The Humboldt Research Award recognizes his outstanding research achievements in the field of fundamental studies of nanoscale physical phenomena in a wide range of materials using a variety of scanning probe microscopy (SPM) methods. Gruverman has pioneered the development of piezoresponse force microscopy (PFM), which since its inception has become a method of choice in both academic and industrial groups for the investigation of the nanoscale properties of ferroelectric materials and structures. Other major scientific accomplishments include the manipulation of ferroelectric domains at the nanoscale, the development of an approach for fast switching dynamics in ferroelectric capacitors, the demonstration of the tunneling electroresistance effect in ferroelectrics and nanoscale studies of electromechanical behavior of biological systems.

His current research topics include the emergence of the ferroelectric ordering in 2D electronic materials and the exploration of the physical mechanism of their polarization-coupled transport properties.

Gruverman plans to spend this first stay associated with the Humboldt Research Award in Germany at the HZB in Berlin and NamLab in Dresden.

Institute Functional Oxides for Energy-Efficient IT


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.