HZB hosts Humboldt Research Award Winner Alexei Gruverman

An award by Humboldt-foundation enables Professor Alexei Gruverman to visit the HZB institute "Functional oxides for energy efficient information technology". 

An award by Humboldt-foundation enables Professor Alexei Gruverman to visit the HZB institute "Functional oxides for energy efficient information technology".  © privat

Professor Alexei Gruverman was granted a Humboldt Research Award in October 2020.  Due to the COVID pandemic, he could not travel until this year. For a few months he is now hosted by Helmholtz-Zentrum Berlin at the Institute “Functional oxides for energy efficient information technology”. 

The renowned award is endowed with 60 000 Euros and is presented annually by the Alexander von Humboldt Foundation to outstanding scientists from abroad to support collaborative projects with researchers in Germany.

“We are very much honored and happy to welcome Alexei Gruverman at the HZB. He is a worldwide leading scientist in the field of nanoscale ferroelectrics. We will further develop our cooperation with him on several topics”, says Prof. Catherine Dubourdieu, head of the institute “Functional oxides for energy efficient information technology” at HZB.  

Professor Alexei Gruverman is a Charles Bessey Professor at the Department of Physics and Astronomy, University of Nebraska-Lincoln, USA. His research includes diverse scientific subjects from nanoscale static and dynamic properties of ferroic materials, to electronic properties of polar surfaces, and electromechanical properties of biomaterials.

The Humboldt Research Award recognizes his outstanding research achievements in the field of fundamental studies of nanoscale physical phenomena in a wide range of materials using a variety of scanning probe microscopy (SPM) methods. Gruverman has pioneered the development of piezoresponse force microscopy (PFM), which since its inception has become a method of choice in both academic and industrial groups for the investigation of the nanoscale properties of ferroelectric materials and structures. Other major scientific accomplishments include the manipulation of ferroelectric domains at the nanoscale, the development of an approach for fast switching dynamics in ferroelectric capacitors, the demonstration of the tunneling electroresistance effect in ferroelectrics and nanoscale studies of electromechanical behavior of biological systems.

His current research topics include the emergence of the ferroelectric ordering in 2D electronic materials and the exploration of the physical mechanism of their polarization-coupled transport properties.

Gruverman plans to spend this first stay associated with the Humboldt Research Award in Germany at the HZB in Berlin and NamLab in Dresden.

Institute Functional Oxides for Energy-Efficient IT

You might also be interested in

  • Tiburtius Prize for Eike Köhnen
    News
    07.12.2022
    Tiburtius Prize for Eike Köhnen
    On Tuesday, 6 December 2022, Dr. Eike Köhnen received the Tiburtius Prize (First Place) for outstanding dissertations. Eike Köhnen has contributed to significantly increasing the efficiency of tandem solar cells made of perovskite and silicon, to the point of setting world records.
  • Two women, one mission: living diversity at HZB
    Interview
    06.12.2022
    Two women, one mission: living diversity at HZB
    At the end of October 2022, the management appointed Ana Sofia Anselmo and Silvia Zerbe as new diversity officers. Together they will address diversity at HZB and drive it forward with employees. Ana works in the Director’s Office and is responsible for International Affairs. Silvia is deputy press spokesperson at HZB and is dedicated to internal communication at the centre.

  • New monochromator optics for tender X-rays
    Science Highlight
    30.11.2022
    New monochromator optics for tender X-rays
    Until now, it has been extremely tedious to perform measurements with high sensitivity and high spatial resolution using X-ray light in the tender energy range of 1.5 - 5.0 keV. Yet this X-ray light is ideal for investigating energy materials such as batteries or catalysts, but also biological systems. A team from HZB has now solved this problem: The newly developed monochromator optics increase the photon flux in the tender energy range by a factor of 100 and thus enable highly precise measurements of nanostructured systems. The method was successfully tested for the first time on catalytically active nanoparticles and microchips.