Jan Lüning leitet HZB-Institut für Elektronische Struktur Dynamik

© HG Medien

Das zum 1. Mai neu gegründete HZB-Institut für Elektronische Struktur Dynamik entwickelt experimentelle Techniken und Infrastrukturen, um die Dynamik elementarer mikroskopischer Prozesse in neuartigen Materialsystemen zu untersuchen. Auf Basis dieser Erkenntnisse lassen sich funktionale Materialien mit besonderen Eigenschaften für nachhaltige Technologien gezielt optimieren.

Prof. Dr. Jan Lüning ist ein international anerkannter Experte für die Forschung mit Synchrotronstrahlung. Vor seinem Wechsel an das HZB in 2018 war er Professor an der Sorbonne Universität in Paris und arbeitete am französischen Synchrotron SOLEIL.

Zum Institut gehören drei Fachgruppen: Die Gruppe um Dr. Ulrich Schade betreibt das Infrarot-Strahlrohr IRIS an der Synchrotronstrahlungsquelle BESSY II und erforscht molekulare Prozesse in neuartigen funktionalen Materialien, die zum Beispiel die Umwandlung von Energie oder die katalytische Wasserspaltung ermöglichen.

Die Gruppe „Ultra-Kurzzeit Laser-Spektroskopie“ (Leitung Dr. Iain Wilkinson) arbeitet in den Laserlaboren ULLAS und LIDUX und untersucht die Dynamik von Reaktionen in wässrigen Lösungen und an wässrigen Grenzflächen auf ultra-kurzen Zeitskalen.

Die dritte Gruppe um Dr. Christian Schüssler-Langeheine und Dr. Niko Pontius betreibt die Femtoslicing-Facility an BESSY II und forscht an Materialien mit komplexen Phasenübergängen, die das Potential haben, elektronische und magnetische Bauteile kleiner, schneller und energieeffizienter zu machen.

Die Forschungsaktivitäten des Instituts sind in der Programmorientierten Förderung (POF IV) der Helmholtz-Gemeinschaft im Forschungsbereich Materie angesiedelt.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.