Jan Lüning leitet HZB-Institut für Elektronische Struktur Dynamik

© HG Medien

Das zum 1. Mai neu gegründete HZB-Institut für Elektronische Struktur Dynamik entwickelt experimentelle Techniken und Infrastrukturen, um die Dynamik elementarer mikroskopischer Prozesse in neuartigen Materialsystemen zu untersuchen. Auf Basis dieser Erkenntnisse lassen sich funktionale Materialien mit besonderen Eigenschaften für nachhaltige Technologien gezielt optimieren.

Prof. Dr. Jan Lüning ist ein international anerkannter Experte für die Forschung mit Synchrotronstrahlung. Vor seinem Wechsel an das HZB in 2018 war er Professor an der Sorbonne Universität in Paris und arbeitete am französischen Synchrotron SOLEIL.

Zum Institut gehören drei Fachgruppen: Die Gruppe um Dr. Ulrich Schade betreibt das Infrarot-Strahlrohr IRIS an der Synchrotronstrahlungsquelle BESSY II und erforscht molekulare Prozesse in neuartigen funktionalen Materialien, die zum Beispiel die Umwandlung von Energie oder die katalytische Wasserspaltung ermöglichen.

Die Gruppe „Ultra-Kurzzeit Laser-Spektroskopie“ (Leitung Dr. Iain Wilkinson) arbeitet in den Laserlaboren ULLAS und LIDUX und untersucht die Dynamik von Reaktionen in wässrigen Lösungen und an wässrigen Grenzflächen auf ultra-kurzen Zeitskalen.

Die dritte Gruppe um Dr. Christian Schüssler-Langeheine und Dr. Niko Pontius betreibt die Femtoslicing-Facility an BESSY II und forscht an Materialien mit komplexen Phasenübergängen, die das Potential haben, elektronische und magnetische Bauteile kleiner, schneller und energieeffizienter zu machen.

Die Forschungsaktivitäten des Instituts sind in der Programmorientierten Förderung (POF IV) der Helmholtz-Gemeinschaft im Forschungsbereich Materie angesiedelt.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.