Shutdown at BESSY II: new supply technology ensures long-term operation

During the shutdown, the low voltage main distribution panel will be completely renewed (here in the picture: before the conversion).

During the shutdown, the low voltage main distribution panel will be completely renewed (here in the picture: before the conversion). © HZB/A. Knoch

The conversion work is in full swing: the old components are being dismantled and replaced.

The conversion work is in full swing: the old components are being dismantled and replaced. © HZB/A. Knoch

The X-ray source BESSY II is in a three-month period of shutdown. During this period, the low voltage main distribution panel in the supply building outside the electron storage ring is being renovated. This will secure the long-term operation of BESSY II over the next decade.

“The feeder cubicles for the power supply of the BESSY II machine are key to its reliable operation,” relates the responsible project manager Andreas Knoch from Technical Services (FM-T). The equipment section of the low voltage main distribution board comprises 36 control panels. They provide electricity to important components for operating the accelerator facility. These include, among other things, power supply units, magnets, high frequency systems, vacuum systems, climate control, osmosis water systems and IT systems.

“We need to replace the respective switchgear one-to-one, since there are no substitutes for the important components due to their age. The control cabinets will be equipped with components similar to the existing ones, except with adapted elements and additionally universal meters, active arc protection and new data bus technology in all outputs,” Knoch adds. Furthermore, new chillers will be installed during the shutdown. These will ensure the climate control in the electron storage ring runs reliably.

The interrelated work during the shutdown is being coordinated by Ingo Müller together with Christian Jung. The three months of “darkness” will therefore be used for other tasks as well: among others, for example, construction is continuing for the new experimental stations of the “BElChem” lab. In this joint project, the Max Planck Society and HZB are setting up new experimental capabilities at BESSY II for analysing material systems for electrochemical and catalytic applications. This work will continue even after the summer shutdown has ended.

Even if the shutdown were to continue into August, the interruption is the best alternative in which the least amount of measurement time is lost. “After all, all of our measures are aimed at one thing: that BESSY II will be available to our users stably and without unplanned interruptions,” says Christian Jung.

BESSY II will be started up again from 8 August 2022. Three weeks after that, on 30 August, HZB will once again be welcoming its users to the BESSY II beamlines.

 

(sz)

You might also be interested in

  • Deputy Prime Minister of Singapore visits HZB
    News
    21.06.2022
    Deputy Prime Minister of Singapore visits HZB
    On Friday, 17 June, a delegation from Singapore visited HZB. Heng Swee Keat, Deputy Prime Minister of Singapore, was accompanied by the Ambassador to Singapore in Berlin, Laurence Bay, as well as representatives from research and industry.
  • Calculating the "fingerprints" of molecules with artificial intelligence
    Science Highlight
    13.06.2022
    Calculating the "fingerprints" of molecules with artificial intelligence
    With conventional methods, it is extremely time-consuming to calculate the spectral fingerprint of larger molecules. But this is a prerequisite for correctly interpreting experimentally obtained data. Now, a team at HZB has achieved very good results in significantly less time using self-learning graphical neural networks.
  • New discoveries into how the body stores zinc
    Science Highlight
    25.05.2022
    New discoveries into how the body stores zinc
    Zinc deficiency is a global health problem affecting many people and results in a weak immune system in adults and especially in children. This is a challenge for health systems and is quite evident in the Mexican population, for example. Seeking explanations, researchers in Mexico teamed up with international synchrotron experts and gained new insights from studying Drosophila fruit flies, which are known to be a decent model system for human zinc metabolism.
    Thanks to beamtime at BESSY II and at the SLS (PSI), they were able to show that the zinc stores in Drosophila flies depend on the tryptophan content of their diet.