International consortium to advance decarbonisation of the aviation sector

© Sasol

JOHANNESBURG, SOUTH AFRICA – 24 May 2022: CARE-O-SENE research project will develop advanced catalysts for sustainable aviation fuels

The company Sasol and Helmholtz-Zentrum Berlin (HZB) will lead a consortium to develop and optimise next-generation catalysts that will play a key role in decarbonising the aviation sector through sustainable aviation fuels (SAF).

At a ceremony at Sasol’s global headquarters in Johannesburg today, South African President Cyril Ramaphosa and German Chancellor Olaf Scholz attended the launch of CARE-O-SENE (Catalyst Research for Sustainable Kerosene) research project, to be funded by the German Federal Ministry of Education and Research (BMBF) and Sasol.

Sasol joins forces with five other world-leading organisations in Germany and South Africa to accelerate the development of catalysts that are essential to produce green kerosene on a commercial scale through Fischer-Tropsch (FT) technology.

“We are delighted to have been selected to lead this important project,” said Fleetwood Grobler, President and Chief Executive Officer of Sasol Limited. “Our expertise in FT technology and catalysts makes us the ideal partner to help Germany and the world decarbonise the aviation sector and make it sustainable over the long-term.”

Prof. Dr. Bernd Rech, Scientific Managing Director of HZB adds, “CARE-O-SENE will enable us to accelerate innovation in a crucial field of green energy. This can only be achieved in a global partnership by deeply integrating fundamental research and technology development on an industry relevant scale.”

Other CARE-O-SENE project partners include the Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), the Karlsruhe Institute of Technology (KIT), the University of Cape Town, Department of Chemical Engineering (UCT) and INERATEC GmbH. The consortium expresses its sincere gratitude to the German Federal Ministry of Education and Research for supporting these important efforts.

CARE-O-SENE will run for three years and pursues the goal of setting the course for large-scale commercialisation of green kerosene production by 2025 with its research on catalysts. Catalysts are used to speed up chemical reactions, increase the yield and improve the quality of refined products. The new FT catalysts are expected to increase the fuel yield of the process to over 80 percent, thereby optimising use of resources.

Unlike conventional kerosene derived from fossil feedstocks, SAF can be made from green hydrogen and sustainable carbon dioxide sources. Developing SAF is key to a sustainable decarbonisation of the hard-to-abate aviation industry, and the main lever for net zero aviation. The underlying technology to developing SAF at scale from green hydrogen and sustainable carbon sources is FT technology, in which Sasol has been a global leader for more than 70 years.

(sz)


You might also be interested in

  • Key role of nickel ions in the Simons process discovered
    News
    21.05.2024
    Key role of nickel ions in the Simons process discovered
    Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

  • Watching indium phosphide at work
    Science Highlight
    15.05.2024
    Watching indium phosphide at work
    Indium phosphide is a versatile semiconductor. The material can be used for solar cells, for hydrogen production and even for quantum computers – and with record-breaking efficiency. However, little research has been conducted into what happens on its surface. Researchers have now closed this gap and used ultra-fast lasers to scrutinise the dynamics of the electrons in the material.
  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.