Umweltauswirkungen von Perowskit-Silizium-PV-Modulen geringer als bei Silizium allein

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung.

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung. © Oxford PV

Eine Studie hat erstmals die Umweltauswirkungen von industriell hergestellten Perowskit-auf-Silizium-Tandem-Solarmodulen über den gesamten Lebenszyklus bewertet. Dabei stellte Oxford PV die Tandem-Solarmodule sowie Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung. Das Ergebnis: Die innovativen Tandem-Solarmodule sind über ihre Lebensdauer sogar noch umweltfreundlicher als herkömmliche Silizium-Heterojunktion-Module. Die Studie wurde im Fachjournal Sustainable Energy & Fuels veröffentlicht.

Photovoltaik boomt. Während im Jahr 2002 etwa 2 Gigawatt PV-Kapazität installiert war, stieg die Kapazität in 2022 auf mehr als 1 TW (1000 GW). Um die Klimazeile zu erreichen, soll Photovoltaik auch in den kommenden Jahrzehnten weiter ausgebaut werden. Tandem-Solarzellen, die Perowskit-Schichten mit Silizium kombinieren, erzeugen auf gleicher Fläche deutlich mehr Strom als die herkömmliche Siliziumtechnologie. Dabei wird eine Perowskit-Zelle auf eine Siliziumzelle aufgebracht. Diese Tandemtechnologie hat bei der solaren Umwandlungseffizienz Weltrekordwerte erreicht, der jetzt bei über 31 % liegt.

Erstmals industriell hergestellte Module über den Lebenszyklus bewertet

Doch auch bei PV-Solarmodulen ist es nötig, die Umweltauswirkungen über ihren gesamten Lebenszyklus zu betrachten, um sie weiter zu minimieren. Die Lebenszyklusbewertung von Perowskit-auf-Silizium-PV-Modulen stützte sich jedoch bisher stark auf Daten von Labor- und Testeinrichtungen und nicht von Herstellern. Nun haben Forschungsteams erstmals die Umweltleistung von industriell hergestellten Perowskit-Silizium-PV-Modulen bewertet.

"Wir haben festgestellt, dass Perowskit-auf-Silizium-PV-Module über eine Lebensdauer von 25 Jahren umweltfreundlicher sind als herkömmliche Silizium-Heterojunction-Module", sagt Bernd Stannowski vom Helmholtz-Zentrum Berlin, Ko-Autor der Studie.

Dabei bewerteten sie eine Reihe von Kategorien, darunter Wasserverbrauch, Toxizität für Mensch und Gewässer, Metallverbrauch und Material- und Energieaufwand für den gesamten Lebenszyklus eines Moduls von Anfang bis Ende: d. h. den gesamten Material- und Energieaufwand für die Waferproduktion, die Herstellung der Perowskit-Zelle und die Modulproduktion.

Tandemmodule: mehr Strom pro Fläche

Im Anschluss wurden die Umweltauswirkungen des Tandemmoduls gegen die während seiner Lebensdauer erzeugte Elektrizität abgewogen.

"Wir fanden heraus, dass das Perowskit-auf-Silizium-Modul die Umwelt um 6 bis 18 % weniger belastet als ein Silizium-Modul, wenn man die zusätzliche Energie berücksichtigt, die während der 25-jährigen Lebensdauer des Tandem-Moduls erzeugt wird", sagt Ko-Autor Martin Roffeis von der Technischen Universität Berlin.

Das in der Studie verwendete Tandemmodul würde in 22 Jahren die gleiche Menge an Strom erzeugen wie das referenzierte Silizium-Heteroübergangsmodul in 25 Jahren.

"Der höhere Wirkungsgrad des Perowskit-Silizium-Tandemmoduls kompensiert die Umweltbelastung, die durch das zusätzliche Perowskit-Material und die Prozesse entsteht", erklärt Jan-Christoph Goldschmidt, der an der Studie während seiner Zeit am Fraunhofer-Institut für Solare Energiesysteme beteiligt war und inzwischen an der Philipps-Universität Marburg forscht.

Die Studie zeigt auch, dass die Umweltverträglichkeit eines Perowskit-Silizium-Moduls in hohem Maße vom Energieverbrauch bei der Herstellung der Siliziumwafer beeinflusst wird.

Oxford PV stellte für die Studie die Perowskit-auf-Silizium-Module und Prozessdaten aus seiner Serienfertigung in Deutschland zur Verfügung.

Nachhaltigkeit gewinnt an Bedeutung

"Die Nachhaltigkeit von Solarmaterialien und Lieferketten gewinnt zunehmend an Bedeutung, da die Welt Solaranlagen im Multi-Terawatt-Bereich einsetzt", sagt Laura Miranda Pérez, Leiterin der Materialforschung bei Oxford PV. "Wir hoffen, dass unser Beitrag der Industrie und der wissenschaftlichen Gemeinschaft helfen wird, das Design, die Produktion und das End-of-Life-Management von Tandem-Technologien zu verbessern und so ihre Einführung zu unterstützen."

OxfordPV / red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.