Potential energy surfaces of water mapped for the first time

Liquids are more difficult to describe than gases or crystalline solids. Now an HZB team has succeeded in mapping the energy surfaces of water molecules, a first step to understand water’s chemical behaviour.

Liquids are more difficult to describe than gases or crystalline solids. Now an HZB team has succeeded in mapping the energy surfaces of water molecules, a first step to understand water’s chemical behaviour. © stock.adobe.com

Liquids are more difficult to describe than gases or crystalline solids. An HZB team has now mapped the potential energy surfaces of water molecules in liquid water under ambient conditions for the first time at the Swiss Light Source SLS of the Paul Scherrer Institute, Switzerland. This contributes to a better understanding of the chemistry of water and in aqueous solutions. These investigations can soon be continued at the newly built METRIXS station at the X-ray source BESSY II.

 

Water is certainly the best-known liquid in the world. Water plays a crucial role in all biological and many chemical processes. The water molecules themselves hardly hold any secrets. In school already we learn that water consists of one oxygen atom and two hydrogen atoms. We even know the typical obtuse angle that the two O-H legs form with each other. In addition, we know when water boils or freezes and how these phase transitions are related to pressure. But between facts on individual molecules and a deeper understanding of the macroscopic phenomena, there is a wide area of uncertainty: Only statistical information is known about the behaviour of the individual molecules in normal liquid water: the water molecules in the liquid phase form a fluctuating network of hydrogen bonds, disordered and dense, and their interactions are not at all as well understood as in the gaseous state.

Pure liquid water examined

Now, a team led by HZB physicist Dr. Annette Pietzsch has taken a closer look at pure liquid water at room temperature and normal pressure. Using X-ray analysis at the Swiss Light Source of the Paul Scherrer Institute and statistical modelling, the scientists have succeeded in mapping the so-called potential energy surfaces of the individual water molecules in the ground state, which come in a large variety of shapes depending on their environment.

Oscillations and vibrations measured

"The special thing here is the method: we studied the water molecules on the ADRESS beamline using resonant inelastic X-ray scattering. Simply put, we nudged individual molecules very carefully and then measured how they fell back into the ground state," says Pietzsch. The low-energy excitations led to stretching oscillations and other vibrations, which - combined with model calculations - produced a detailed picture of the potential surfaces.

"This gives us a method to experimentally determine the energy of a molecule as a function of its structure," explains Pietzsch. "The results help to enlighten the chemistry in water, for example to understand better how water behaves as a solvent."

Outlook: METRIXS at BESSY II

The next experiments are already planned at the BESSY II X-ray source at HZB. There, Annette Pietzsch and her team have set up the METRIXS measuring station, which is designed precisely for investigating liquid samples with RIXS experiments. "After the summer shutdown due to maintenance work on BESSY II, we will start with the first tests of our instruments. And then we can move on."

arö


You might also be interested in

  • Unconventional piezoelectricity in ferroelectric hafnia
    Science Highlight
    26.02.2024
    Unconventional piezoelectricity in ferroelectric hafnia
    Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometre range. While their ferroelectric behaviour is extensively studied, results on piezoelectric effects have so far remained mysterious. A new study now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another ground-breaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.
  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.