Third-highest oxidation state secures rhodium a place on the podium

For the first time, a team has detected rhodium in the +7 oxidation state, the third highest oxidation state experimentally among all elements in the periodic table.

For the first time, a team has detected rhodium in the +7 oxidation state, the third highest oxidation state experimentally among all elements in the periodic table. © https://doi.org/10.1002/anie.202207688

Oxidation states of transition metals describe how many electrons of an element are already engaged in bonding, and how many are still available for further reactions. Scientists from Berlin and Freiburg have now discovered the highest oxidation state of rhodium, indicating that rhodium can involve more of its valence electrons in chemical bonding than previously thought. This finding might be relevant for the understanding of catalytic reactions involving highly-oxidized rhodium. The result was recognized as a „very important paper“ in Angewandte Chemie.

Transition metals in high or unusual oxidation states might play an important role as catalysts or reaction intermediates in chemical reactions. Because transition metals are already well characterized in most cases, the discovery of a new oxidation state of rhodium came as a real surprise. The identification of rhodium(VII) was made possible by PhD student Mayara da Silva Santos and co-workers, who were able to isolate the species from any reactant in a low-temperature ion trap, and perform x-ray absorption spectroscopy for its characterization. 

BESSY II was essential for the discovery

These kinds of experiments are highly demanding, and can, at present, only be carried out at BESSY II. „The combination of advanced sample preparation, low-temperature ion trapping, and x-ray spectroscopy is unique. Because these essential tools can even be applied to more complex systems, we anticipate further insight into exotic transition metal oxides“, says Vicente Zamudio-Bayer, head of the ion trap group at beamline UE52-PGM, who develops and operates the ion trap endstation at BESSY II. „What was important for us was that our surprising experimental findings could be substantiated by Sebastian Riedel‘s group at FU Berlin, who performed state-of-the-art calculations on the species in question“, explains Zamudio-Bayer. “Even rhodium in oxidation state +6 is very rare, so we had to be extremely careful about +7. New oxidation states are not discovered every day”, says Mayara da Silva Santos.

Catalytic relevance of a potential reaction intermediate

“This is the third-highest oxidation state of all elements. The fact that rhodium(VII) exists, but was unknown, could imply that it might have been overlooked when analyzing pathways of chemical reactions”, Zamudio-Bayer points out.

Possible stabilization for further use

The discovery of rhodium(VII) was made for gas-phase species, but a stabilization of the trioxidorhodium cation by weakly coordinating anions seems possible, based on comparison with other known compounds . This could open prospects for further characterization or applications. “Our rhodium(VII) species is highly reactive, but understanding these seemingly exotic species could lead to improved materials in the future,” Mayara da Silva Santos adds.

Tobias Lau


You might also be interested in

  • Spintronics at BESSY II: Domain walls in magnetic nanowires
    Science Highlight
    02.06.2023
    Spintronics at BESSY II: Domain walls in magnetic nanowires
    Magnetic domains walls are known to be a source of electrical resistance due to the difficulty for transport electron spins to follow their magnetic texture. This phenomenon holds potential for utilization in spintronic devices, where the electrical resistance can vary based on the presence or absence of a domain wall. A particularly intriguing class of materials are half metals such as La2/3Sr1/3MnO3 (LSMO) which present full spin polarization, allowing their exploitation in spintronic devices. Still the resistance of a single domain wall in half metals remained unknown. Now a team from Spain, France and Germany has generated a single domain wall on a LSMO nanowire and measured resistance changes 20 times larger than for a normal ferromagnet such as Cobalt.
  • Fractons as information storage: Not yet quite tangible, but close
    Science Highlight
    26.05.2023
    Fractons as information storage: Not yet quite tangible, but close
    A new quasiparticle with interesting properties has appeared in solid-state physics - but so far only in the theoretical modelling of solids with certain magnetic properties. An international team from HZB and Freie Universität Berlin has now shown that, contrary to expectations, quantum fluctuations do not make the quasiparticle appear more clearly, but rather blur its signature.
  • Graphene on titanium carbide triggers a novel phase transition
    Science Highlight
    25.05.2023
    Graphene on titanium carbide triggers a novel phase transition
    Researchers have discovered a Lifshitz-transition in TiC, driven by a graphene overlayer, at the photon source BESSY II. Their study sheds light on the exciting potential of 2D materials such as graphene and the effects they can have on neighboring materials through proximity interactions.