Fine particles back into the raw material cycle

Within three subprojects, organic, metallic and fines that could be recycled into cement are being investigated.

Within three subprojects, organic, metallic and fines that could be recycled into cement are being investigated. © FINEST

Industrial processes always produce fine-grained residues. These rarely find their way back into the industrial value chain, but are usually disposed of and represent a potential environmental risk. The FINEST project records and investigates various of these fine-grained material flows with the aim of developing new concepts to keep them in the cycle and safely dispose of remaining residues. 
FINEST was successful in the Helmholtz Association's sustainability competition and will now receive 5 million euros in funding. 

The project is coordinated by the Helmholtz Institute Freiberg for Resource Technology (HIF) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and involves teams at the Helmholtz-Zentrum Berlin (HZB), the Karlsruhe Institute of Technology (KIT), the Helmholtz Centre for Environmental Research (UFZ), the TU Bergakademie Freiberg (TUBAF) and the University of Greifswald. 

The HZB is participating in FINEST in a project on the degradation of microplastics. "Together with the UFZ, we want to investigate how microplastic particles can be degraded, for example by bacterial enzymes that we improve on a structure basis. In addition, we also want to work with the HZDR to develop new detection methods for micro- and nanoplastics," says Dr. Gert Weber, who conducts research in the Macromolecular Crystallography Group at the HZB.

Starting in July 2022, the researchers from the six participating institutions will work in the five-year project on ultra-fine materials of anthropogenic origin such as microplastics, mineral additives (additives) or metals, for which there are currently hardly any recycling options. Innovative processes are to be used to increase the currently still very low recycling rates of these fine particulate materials and to deposit the remaining residues harmlessly in order to advance a sustainable circular economy. 

Read the full text of the press release at the website of HZDR


You might also be interested in

  • ERC Consolidator Grant for HZB researcher Robert Seidel
    ERC Consolidator Grant for HZB researcher Robert Seidel
    Physicist Dr Robert Seidel has been awarded a Consolidator Grant by the European Research Council (ERC). Over the next five years, he will receive a total of two million euros for his research project WATER-X. Seidel will use state-of-the-art X-ray techniques at BESSY II to study nanoparticles in aqueous solution for the photocatalytic production of "green" hydrogen.
  • Unconventional piezoelectricity in ferroelectric hafnia
    Science Highlight
    Unconventional piezoelectricity in ferroelectric hafnia
    Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometre range. While their ferroelectric behaviour is extensively studied, results on piezoelectric effects have so far remained mysterious. A new study now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another ground-breaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.
  • Helmholtz Zentrum Berlin is a bicycle-friendly employer
    Helmholtz Zentrum Berlin is a bicycle-friendly employer
    Since 2017, the German Cyclists' Federation (ADFC) has been awarding the EU-wide "Bicycle-Friendly Employer" certification. The Helmholtz-Zentrum Berlin has now been awarded the coveted silver seal. With this, the HZB wants to be even more attractive as an employer, especially for international applicants.