Buckyballs auf Gold sind weniger exotisch als Graphen

Mit Berechnungen auf Basis der Dichtefunktionaltheorie und Messdaten aus der spinaufgelösten Photoemission untersuchte das Team den Ursprung der sich wiederholenden Au(111)-Banden und löst sie als tiefe Oberflächenresonanzen auf. Diese Resonanzen führen zu einer zwiebelartigen Fermioberfläche von Au(111).

Mit Berechnungen auf Basis der Dichtefunktionaltheorie und Messdaten aus der spinaufgelösten Photoemission untersuchte das Team den Ursprung der sich wiederholenden Au(111)-Banden und löst sie als tiefe Oberflächenresonanzen auf. Diese Resonanzen führen zu einer zwiebelartigen Fermioberfläche von Au(111). © HZB

Messdaten von BESSY II vor und nach Deposition von Buckyballs auf Gold zeigen die Bandstrukturen und das Auftreten von kegelartigen Überkreuzungen. In der Mitte ist die Rasterelektronenmikroskopie der Buckyballs auf Gold eingeblendet.

Messdaten von BESSY II vor und nach Deposition von Buckyballs auf Gold zeigen die Bandstrukturen und das Auftreten von kegelartigen Überkreuzungen. In der Mitte ist die Rasterelektronenmikroskopie der Buckyballs auf Gold eingeblendet. © HZB

C60-Moleküle auf einem Gold-Substrat wirken komplexer als ihr Vorbild aus Graphen, haben aber viel gewöhnlichere elektronische Eigenschaften. Dies zeigen nun Messungen mit ARPES an BESSY II und ausführliche Berechnungen.

 

Graphen besteht aus Kohlenstoff-Atomen, die sich zu einer flachen Bienenwabenstruktur vernetzen. Das Material besitzt neben überraschend hoher mechanischer Stabilität spannende elektronische Eigenschaften: Die Elektronen verhalten sich wie masselose Teilchen, was sich in spektrometrischen Experimenten klar nachweisen lässt. Messungen zeigen eine lineare Abhängigkeit der Energie vom Impuls, die so genannten Dirac-Kegel: zwei Linien, die sich kreuzen, ohne dass eine Bandlücke – also eine Energiedifferenz zwischen Elektronen im Leitungsband und solchen in den Valenzbändern – auftreten würde.

Varianten mit Graphen-Architektur

Künstliche Varianten der Graphen-Architektur sind in der Materialforschung ein aktuelles Thema. Anstelle  der Kohlenstoffatome wurden Quantenpunkte aus Silizium platziert, ultrakalte Atome mit starken Laserfeldern im Bienenwabengitter festgehalten oder Kohlenmonoxid-Moleküle auf einer Kupferoberfläche Stück für Stück mit einem Rastertunnelmikroskop an Ort und Stelle geschoben, wo sie den Elektronen des Kupfers die charakteristischen Grapheneingeschaften übertragen konnten.

Buckyballs auf Gold = künstliches Graphen?

Eine Studie deutete vor kurzem darauf hin, dass es ungleich einfacher ist, künstliches Graphen mit Hilfe von C60-Molekülen, sogenannten Buckyballs, herzustellen. Von diesen muss nur eine gleichmäßige Schicht auf Gold aufgedampft werden, damit die Goldelektronen die besonderen Grapheneigenschaften annehmen. Messungen von Photoemissionsspektren schienen eine Art Dirac-Kegel zu zeigen.

Elektronische Eigenschaften an BESSY II analysiert

„Das wäre wirklich sehr erstaunlich“, meint Dr. Andrei Varykhalov aus dem HZB, der eine Arbeitsgruppe für Photoemission und Rastertunnelmikroskopie leitet. „Denn das C60-Molekül ist absolut unpolar. Für uns war schwer vorstellbar, wie solche Moleküle einen starken Einfluss auf die Elektronen im Gold ausüben sollen.“ Daher starteten Varykhalov und sein Team eine Messreihe, um diese These zu überprüfen.

In kniffliger Kleinarbeit konnte das Berliner Team C60-Lagen auf Gold über einen deutlich größeren Energiebereich und für verschiedene Messparameter untersuchen. Dabei nutzten sie die winkelaufgelöste ARPES-Spektroskopie an BESSY II, die besonders präzise Messungen ermöglicht, und analysierten für einige Messungen auch den Elektronenspin.

Normal statt exotisch

„Wir sehen in unseren Messdaten einen parabelförmigen Zusammenhang zwischen Impuls und Energie, also ein ganz normales Verhalten. Diese Signale stammen von den Elektronen tief aus dem Substrat (Gold bzw. Kupfer) und nicht der Schicht, die von den Buckyballs beeinflusst werden könnte“, erklärt Dr. Maxim Krivenkov, Erstautor der Studie. Auch die linearen Messkurven aus der vorherigen Studie konnte das Team erklären. „Diese Messkurven imitieren die Dirac-Kegel lediglich, sie sind sozusagen ein Artefakt, das sich auf einer Ablenkung der Photoelektronen ergibt, wenn Sie das Gold verlassen und die C60-Schicht passiern“, erläutert Varykhalov. Als künstliches Graphen kann die  Buckyball-Schicht auf Gold daher nicht gelten.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.