Ein neuer Weg zu spinpolarisierten Strömen

Hafniumdiselenid ist ein quasizweidimensionales Material mit interessanten Eigenschaften für die Spintronik. Die Zeichnung zeigt die Kristallstruktur.

Hafniumdiselenid ist ein quasizweidimensionales Material mit interessanten Eigenschaften für die Spintronik. Die Zeichnung zeigt die Kristallstruktur. © O. Clark/HZB

Die Übergangsmetall-Dichalcogenide (TMD) sind eine Materialklasse mit großem Potential für die Spintronik. Eine Studie an BESSY II hat gezeigt, dass in einem dieser Materialien bereits einfach linear polarisiertes Licht ausreicht, um Spins unterschiedlicher Ausrichtung selektiv zu manipulieren. Dieses Ergebnis eröffnet einen neuen Weg zur Erzeugung spinpolarisierter Ströme und ist ein Meilenstein für die Entwicklung spintronischer und opto-spintronischer Geräte.

Die zweite Hälfte des 20. Jahrhunderts war das Zeitalter der Elektronik: Elektronische Bauelemente wurden immer komplexer und kleiner, aber diese Prozesse stoßen nun an Grenzen. Die Spintronik verspricht, mit deutlich weniger Energieeinsatz Informationen allein auf der Grundlage von Spins zu speichern oder zu transportieren. Allerdings ist es immer noch eine Herausforderung, Spins durch externe Felder zuverlässig und in großem Maßstab zu steuern.

Quasi-2D-Materialien im Fokus

Die Übergangsmetall-Dichalcogenide (TMD) sind neben Graphen die am intensivsten untersuchten quasi-zweidimensionalen Materialien, die Ladungsdichtewellen, Supraleitfähigkeit und nichttriviale topologische Eigenschaften zeigen. Hafniumdiselenid (HfSe2) gehört zu dieser Klasse von Materialien.

Neue Eigenschaft von HfSe2 entdeckt

Jetzt hat ein Team an BESSY II die elektronische Struktur von HfSe2 analysiert und eine neue Eigenschaft entdeckt, die die Erzeugung und Kontrolle von Spinströmen erleichtern könnte.

"Um von der Elektronik zur Spintronik überzugehen, müssen wir Materialien finden, in denen sich Spin-up- und Spin-down-Elektronen unterschiedlich verhalten", sagt Erstautor Oliver Clark. Es gibt zwei Möglichkeiten, dies zu erreichen: "Wir können entweder das Material von außen stören, so dass Elektronen mit unterschiedlichen Spins funktional ungleichwertig werden, oder wir können Magnete verwenden, bei denen die Elektronen mit entgegengesetzten Spins von Haus aus funktional unterschiedlich sind."

Bei der ersten Methode liegt die Schwierigkeit darin, geeignete Materialpaarungen und Mechanismen zu finden, mit denen die Spin-Kontrolle von außen aufgezwungen werden kann. Für die so genannten 2H-strukturierten TMDs benötigt man beispielsweise perfekte Einkristalle und eine zirkular polarisierte Lichtquelle. Im Gegensatz dazu ist die zweite Methode viel einfacher, aber die Integration von Magneten in Bauelemente ist für den Betrieb herkömmlicher elektronischer Komponenten problematisch, vor allem in kleinem Maßstab.

Bei HfSe2 funktioniert ein einfacherer Weg

Zwischen diesen beiden Möglichkeiten gibt es jedoch einen Mittelweg, zumindest für einige ausgewählte Materialien wie HfSe2: "Wenn man dieses Material mit linear polarisiertem Licht untersucht - das einfacher zu erzeugen ist als zirkular polarisiertes Licht -, verhält es sich in Bezug auf seine Spinstruktur wie ein Magnet. So wird die Spin-Selektivität sehr einfach, und man hat nicht die Probleme, die mit anderen magnetischen Eigenschaften verbunden sind", erklärt Clark. Der Vorteil ist: Die Kristallqualität oder die Ausrichtung der Probe spielen keine Rolle mehr.

Dies eröffnet einen völlig neuen Weg zur Erzeugung von spinpolarisierten Strömen aus Übergangsmetall-Dichalcogeniden. "Unsere Ergebnisse sind nicht nur für Physikerinnen und Physiker von Bedeutung, die sich mit geschichteten zweidimensionalen Materialien beschäftigen, sondern auch für alle, die sich mit der Herstellung von spintronischen und opto-spintronischen Bauelementen beschäftigen", hofft Clark.

arö


Das könnte Sie auch interessieren

  • Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Science Highlight
    26.02.2024
    Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Hafniumoxid-Dünnschichten sind eine faszinierende Klasse von Materialien mit robusten ferroelektrischen Eigenschaften im Nanometerbereich. Während das ferroelektrische Verhalten ausgiebig untersucht wurde, blieben die Ergebnisse zu den piezoelektrischen Effekten bisher rätselhaft. Eine neue Studie zeigt nun, dass die Piezoelektrizität in ferroelektrischen Hf0,5Zr0,5O2-Dünnschichten durch zyklische elektrische Felder dynamisch verändert werden kann. Ein weiteres bahnbrechendes Ergebnis ist die Möglichkeit einer intrinsischen nicht-piezoelektrischen ferroelektrischen Verbindung. Diese unkonventionellen Eigenschaften von Hafnia bieten neue Optionen für den Einsatz in der Mikroelektronik und Informationstechnologie.
  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 
  • Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Science Highlight
    20.02.2024
    Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.