Ein neuer Weg zu spinpolarisierten Strömen

Hafniumdiselenid ist ein quasizweidimensionales Material mit interessanten Eigenschaften für die Spintronik. Die Zeichnung zeigt die Kristallstruktur.

Hafniumdiselenid ist ein quasizweidimensionales Material mit interessanten Eigenschaften für die Spintronik. Die Zeichnung zeigt die Kristallstruktur. © O. Clark/HZB

Die Übergangsmetall-Dichalcogenide (TMD) sind eine Materialklasse mit großem Potential für die Spintronik. Eine Studie an BESSY II hat gezeigt, dass in einem dieser Materialien bereits einfach linear polarisiertes Licht ausreicht, um Spins unterschiedlicher Ausrichtung selektiv zu manipulieren. Dieses Ergebnis eröffnet einen neuen Weg zur Erzeugung spinpolarisierter Ströme und ist ein Meilenstein für die Entwicklung spintronischer und opto-spintronischer Geräte.

Die zweite Hälfte des 20. Jahrhunderts war das Zeitalter der Elektronik: Elektronische Bauelemente wurden immer komplexer und kleiner, aber diese Prozesse stoßen nun an Grenzen. Die Spintronik verspricht, mit deutlich weniger Energieeinsatz Informationen allein auf der Grundlage von Spins zu speichern oder zu transportieren. Allerdings ist es immer noch eine Herausforderung, Spins durch externe Felder zuverlässig und in großem Maßstab zu steuern.

Quasi-2D-Materialien im Fokus

Die Übergangsmetall-Dichalcogenide (TMD) sind neben Graphen die am intensivsten untersuchten quasi-zweidimensionalen Materialien, die Ladungsdichtewellen, Supraleitfähigkeit und nichttriviale topologische Eigenschaften zeigen. Hafniumdiselenid (HfSe2) gehört zu dieser Klasse von Materialien.

Neue Eigenschaft von HfSe2 entdeckt

Jetzt hat ein Team an BESSY II die elektronische Struktur von HfSe2 analysiert und eine neue Eigenschaft entdeckt, die die Erzeugung und Kontrolle von Spinströmen erleichtern könnte.

"Um von der Elektronik zur Spintronik überzugehen, müssen wir Materialien finden, in denen sich Spin-up- und Spin-down-Elektronen unterschiedlich verhalten", sagt Erstautor Oliver Clark. Es gibt zwei Möglichkeiten, dies zu erreichen: "Wir können entweder das Material von außen stören, so dass Elektronen mit unterschiedlichen Spins funktional ungleichwertig werden, oder wir können Magnete verwenden, bei denen die Elektronen mit entgegengesetzten Spins von Haus aus funktional unterschiedlich sind."

Bei der ersten Methode liegt die Schwierigkeit darin, geeignete Materialpaarungen und Mechanismen zu finden, mit denen die Spin-Kontrolle von außen aufgezwungen werden kann. Für die so genannten 2H-strukturierten TMDs benötigt man beispielsweise perfekte Einkristalle und eine zirkular polarisierte Lichtquelle. Im Gegensatz dazu ist die zweite Methode viel einfacher, aber die Integration von Magneten in Bauelemente ist für den Betrieb herkömmlicher elektronischer Komponenten problematisch, vor allem in kleinem Maßstab.

Bei HfSe2 funktioniert ein einfacherer Weg

Zwischen diesen beiden Möglichkeiten gibt es jedoch einen Mittelweg, zumindest für einige ausgewählte Materialien wie HfSe2: "Wenn man dieses Material mit linear polarisiertem Licht untersucht - das einfacher zu erzeugen ist als zirkular polarisiertes Licht -, verhält es sich in Bezug auf seine Spinstruktur wie ein Magnet. So wird die Spin-Selektivität sehr einfach, und man hat nicht die Probleme, die mit anderen magnetischen Eigenschaften verbunden sind", erklärt Clark. Der Vorteil ist: Die Kristallqualität oder die Ausrichtung der Probe spielen keine Rolle mehr.

Dies eröffnet einen völlig neuen Weg zur Erzeugung von spinpolarisierten Strömen aus Übergangsmetall-Dichalcogeniden. "Unsere Ergebnisse sind nicht nur für Physikerinnen und Physiker von Bedeutung, die sich mit geschichteten zweidimensionalen Materialien beschäftigen, sondern auch für alle, die sich mit der Herstellung von spintronischen und opto-spintronischen Bauelementen beschäftigen", hofft Clark.

arö

Das könnte Sie auch interessieren

  • Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Science Highlight
    28.11.2022
    Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien
    Feststoffbatterien ermöglichen noch höhere Energiedichten als Lithium-Ionenbatterien bei hoher Sicherheit. Einem Team um Prof. Philipp Adelhelm und Dr. Ingo Manke ist es gelungen, eine Feststoffbatterie während des Ladens und Entladens zu beobachten und hochaufgelöste 3D-Bilder zu erstellen. Dabei zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt.
  • Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Science Highlight
    22.11.2022
    Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.
  • Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Science Highlight
    17.11.2022
    Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Photoelektroden auf der Basis von BiVO4 gelten als Top-Kandidaten für die solare Wasserstofferzeugung. Doch was passiert eigentlich, wenn sie mit Wassermolekülen in Kontakt kommen? Eine Studie im Journal of the American Chemical Society hat diese entscheidende Frage nun teilweise beantwortet: Überschüssige Elektronen aus dotierten Fremdelementen oder Defekten fördern die Dissoziation von Wasser, was wiederum sogenannte Polaronen an der Oberfläche stabilisiert. Dies zeigen Daten aus Experimenten eines HZB-Teams an der Advanced Light Source des Lawrence Berkeley National Laboratory. Die Ergebnisse könnten dazu beitragen, bessere Photoanoden für die grüne Wasserstoffproduktion zu entwickeln.