Ein neuer Weg zu spinpolarisierten Strömen

Hafniumdiselenid ist ein quasizweidimensionales Material mit interessanten Eigenschaften für die Spintronik. Die Zeichnung zeigt die Kristallstruktur.

Hafniumdiselenid ist ein quasizweidimensionales Material mit interessanten Eigenschaften für die Spintronik. Die Zeichnung zeigt die Kristallstruktur. © O. Clark/HZB

Die Übergangsmetall-Dichalcogenide (TMD) sind eine Materialklasse mit großem Potential für die Spintronik. Eine Studie an BESSY II hat gezeigt, dass in einem dieser Materialien bereits einfach linear polarisiertes Licht ausreicht, um Spins unterschiedlicher Ausrichtung selektiv zu manipulieren. Dieses Ergebnis eröffnet einen neuen Weg zur Erzeugung spinpolarisierter Ströme und ist ein Meilenstein für die Entwicklung spintronischer und opto-spintronischer Geräte.

Die zweite Hälfte des 20. Jahrhunderts war das Zeitalter der Elektronik: Elektronische Bauelemente wurden immer komplexer und kleiner, aber diese Prozesse stoßen nun an Grenzen. Die Spintronik verspricht, mit deutlich weniger Energieeinsatz Informationen allein auf der Grundlage von Spins zu speichern oder zu transportieren. Allerdings ist es immer noch eine Herausforderung, Spins durch externe Felder zuverlässig und in großem Maßstab zu steuern.

Quasi-2D-Materialien im Fokus

Die Übergangsmetall-Dichalcogenide (TMD) sind neben Graphen die am intensivsten untersuchten quasi-zweidimensionalen Materialien, die Ladungsdichtewellen, Supraleitfähigkeit und nichttriviale topologische Eigenschaften zeigen. Hafniumdiselenid (HfSe2) gehört zu dieser Klasse von Materialien.

Neue Eigenschaft von HfSe2 entdeckt

Jetzt hat ein Team an BESSY II die elektronische Struktur von HfSe2 analysiert und eine neue Eigenschaft entdeckt, die die Erzeugung und Kontrolle von Spinströmen erleichtern könnte.

"Um von der Elektronik zur Spintronik überzugehen, müssen wir Materialien finden, in denen sich Spin-up- und Spin-down-Elektronen unterschiedlich verhalten", sagt Erstautor Oliver Clark. Es gibt zwei Möglichkeiten, dies zu erreichen: "Wir können entweder das Material von außen stören, so dass Elektronen mit unterschiedlichen Spins funktional ungleichwertig werden, oder wir können Magnete verwenden, bei denen die Elektronen mit entgegengesetzten Spins von Haus aus funktional unterschiedlich sind."

Bei der ersten Methode liegt die Schwierigkeit darin, geeignete Materialpaarungen und Mechanismen zu finden, mit denen die Spin-Kontrolle von außen aufgezwungen werden kann. Für die so genannten 2H-strukturierten TMDs benötigt man beispielsweise perfekte Einkristalle und eine zirkular polarisierte Lichtquelle. Im Gegensatz dazu ist die zweite Methode viel einfacher, aber die Integration von Magneten in Bauelemente ist für den Betrieb herkömmlicher elektronischer Komponenten problematisch, vor allem in kleinem Maßstab.

Bei HfSe2 funktioniert ein einfacherer Weg

Zwischen diesen beiden Möglichkeiten gibt es jedoch einen Mittelweg, zumindest für einige ausgewählte Materialien wie HfSe2: "Wenn man dieses Material mit linear polarisiertem Licht untersucht - das einfacher zu erzeugen ist als zirkular polarisiertes Licht -, verhält es sich in Bezug auf seine Spinstruktur wie ein Magnet. So wird die Spin-Selektivität sehr einfach, und man hat nicht die Probleme, die mit anderen magnetischen Eigenschaften verbunden sind", erklärt Clark. Der Vorteil ist: Die Kristallqualität oder die Ausrichtung der Probe spielen keine Rolle mehr.

Dies eröffnet einen völlig neuen Weg zur Erzeugung von spinpolarisierten Strömen aus Übergangsmetall-Dichalcogeniden. "Unsere Ergebnisse sind nicht nur für Physikerinnen und Physiker von Bedeutung, die sich mit geschichteten zweidimensionalen Materialien beschäftigen, sondern auch für alle, die sich mit der Herstellung von spintronischen und opto-spintronischen Bauelementen beschäftigen", hofft Clark.

arö


Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.
  • Neue Doppelspitze für BESSY II
    Nachricht
    13.06.2024
    Neue Doppelspitze für BESSY II
    Andreas Jankowiak als neuer Technischer Direktor und Facility-Sprecherin Antje Vollmer teilen sich Führungsaufgaben.

    Mit Beschluss der Geschäftsführung ist Prof. Andreas Jankowiak zum 1. Juni 2024 zum Technischen Direktor von BESSY II mit einer Amtszeit von drei Jahren ernannt worden. Antje Vollmer wird zum 1. Juli 2024 ihre zweite Amtszeit als BESSY II Facility-Sprecherin starten. Gemeinsam bilden sie das neue Führungsduo, um die wissenschaftliche und technische Weiterentwicklung der Röntgenquelle BESSY II im Auftrag der Geschäftsführung zu koordinieren.

  • Chilenischer Präsident zu Besuch am Helmholtz-Zentrum Berlin
    Nachricht
    12.06.2024
    Chilenischer Präsident zu Besuch am Helmholtz-Zentrum Berlin
    Mit einer 50-köpfigen Delegation besuchte der chilenische Staatspräsident Gabriel Boric Font am 11. Juni das HZB. Zu den großen Momenten des Abends zählten die Unterzeichnung eines Memorandum of Understanding zwischen der chilenischen „Gesellschaft für Produktionsförderung“ CORFO und dem HZB sowie der Besuch der Röntgenquelle BESSY II.