Rhombohedral graphite as a model for quantum magnetism

Rhombohedral graphite (right) consists of staggered graphene layers.

Rhombohedral graphite (right) consists of staggered graphene layers. © 10.1126/sciadv.abo6879

<p class="Default">The surface state of RG is visualized as red spheres centered on the carbon atoms in the top graphene layer. The size of the spheres is proportional to the density of electrons on the carbon atoms. It can also be called a 2D electron system.

The surface state of RG is visualized as red spheres centered on the carbon atoms in the top graphene layer. The size of the spheres is proportional to the density of electrons on the carbon atoms. It can also be called a 2D electron system.

Graphene is an extremely exciting material. Now a graphene variant shows another talent: rhombohedral graphite made of several layers slightly offset from each other could enlighten the hidden physics in quantum magnets.

Graphene materials are made of carbon atoms only, the basic shape is a honeycomb structure. But there are many variants with amazingly versatile properties. For example, stacks of graphene layers* can host a wide variety of quasiparticles and many-body phenomena: From Dirac fermions in single layers to exotic superconductivity in twisted double layers.

A stack of Honeycombs

In rhombohedral graphite (RG), the honeycomb layers are stacked on top of each other, with a specific shift or offset. This leads to a special electronic structure with very flat bands on the surface. Like in a topological insulator, charge carriers move freely at the surface only. Last year, it was shown that trilayers of RG also harbour ferromagnetism and unconventional superconductivity. And: The strength of the interactions increases with the number of layers.

Combination of experimental and theoretical results

A team from the Centre of Energy Research (Topology in Nanostructures, Momentum research group), Budapest, Hungary and at HZB has now examined the surface of multilayer RG samples under a scanning tunnelling microscope for the first time. They could precisely map the band structure and electronic properties and discovered unexpectedly rich many-body ground states. They also worked on various models of quantum physics in order to understand hidden processes and interactions in the samples. 

Link between graphene-systems and quantum magnets

"The interesting thing about rhombohedral graphite is that this material also has so-called spin edge states, which occur in quantum magnets. The work thus connects two major areas of condensed matter: graphene-based systems and quantum magnets," says Dr Imre Hagymási, first author of the paper, which has now appeared in Science Advances.

Rhombohedrical graphene as a tunable platform

The study offers new insights into the interplay between topology and many-body physics and thus the chance to shed light on the physics in quantum magnets. At present, even simple quantum magnets are not fully understood. Yet quantum magnets also play a role in highly topical issues such as high-temperature cuprate superconductors. RG offers an alternative platform for the study of such correlated phenomena. A platform that is tunable by electric fields, strain, etc. and has a very simple crystal structure compared to other correlated materials. "These results are really helpful for the whole research field," says Hagymási.

*Note: Graphene is strictly one layer whereas the arrangement of graphene layers can be called graphite.

arö

  • Copy link

You might also be interested in

  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    News
    04.09.2024
    SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    The first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and the overall quality of the food. Until now, the detection of these molecules has been very costly for the food companies. Researchers at HZB and the University of Stuttgart have developed a portable, small and inexpensive 'EPR on a chip' sensor that can detect free radicals even at very low concentrations. They are now working to set up a spin-off company, supported by the EXIST research transfer programme of the German Federal Ministry of Economics and Climate Protection. The EPRoC sensor will initially be used in the production of olive oil and beer to ensure the quality of these products.
  • Review on ocular particle therapy (OPT) by international experts
    Science Highlight
    03.09.2024
    Review on ocular particle therapy (OPT) by international experts
    A team of leading experts in medical physics, physics and radiotherapy, including HZB physicist Prof. Andrea Denker and Charité medical physicist Dr Jens Heufelder, has published a review article on ocular particle therapy. The article appeared in the Red Journal, one of the most prestigious journals in the field. It outlines the special features of this form of eye therapy, explains the state of the art and current research priorities, provides recommendations for the delivery of radiotherapy and gives an outlook on future developments.