Dynamics in one-dimensional spin chains newly elucidated

The data from neutron scattering (left) provide information about absorbed energies in reciprocal space. With the new evaluation, it has been possible to obtain statements about new magnetic states and their temporal development in real space (right). The colours blue and red indicate the two opposite spin directions.

The data from neutron scattering (left) provide information about absorbed energies in reciprocal space. With the new evaluation, it has been possible to obtain statements about new magnetic states and their temporal development in real space (right). The colours blue and red indicate the two opposite spin directions. © HZB

Neutron scattering is considered the method of choice for investigating magnetic structures and excitations in quantum materials. Now, for the first time, the evaluation of measurement data from the 2000s with new methods has provided much deeper insights into a model system – the 1D Heisenberg spin chains. A new toolbox is available for elucidating future quantum materials has been achieved.

Potassium copper fluoride KCuF3 is considered the simplest model material realising the so-called Heisenberg quantum spin chain: The spins interact with their neighbours antiferromagnetically along a single direction (one-dimensional), governed by the laws of quantum physics.

"We carried out the measurements on this simple model material at the ISIS spallation neutron source some time ago when I was a postdoc, and we  published our results in 2005, 2013 and again in 2021 comparing to new theories each time they became available," says Prof. Bella Lake, who heads the HZB-Institute Quantum Phenomena in Novel Materials. Now with new and extended methods, a team led by Prof. Alan Tennant and Dr Allen Scheie have succeeded to gain significantly deeper insights into the interactions between the spins and their spatial and temporal evolution.

Dynamics like a wake

"With neutron scattering, you sort of nudge a spin so that it flips. This creates a dynamic, like a wake when a ship is sailing through water, which can affect its neighbours and their neighbours," Tennant explains.

”Neutron scattering data is measured as a function of energy and wavevector” says Scheie “ Our breakthrough was to map the spatial and temporal development of the spins using mathematical methods such as a back-Fourier transformation.” Combined with other theoretical methods, the physicists gathered information about interactions between the spin states and their duration and range, as well as insights into the so-called quantum coherence.

New tool box

The work demonstrates a new tool box for the analysis of neutron scattering data and might foster a deeper understanding of quantum materials that are relevant for technological use.

arö


You might also be interested in

  • Green Deal Ukraina: HZB launches an Energy & Climate Project
    News
    07.06.2023
    Green Deal Ukraina: HZB launches an Energy & Climate Project
    Green Deal Ukraina, funded by the German Federal Ministry of Education and Research, is working with partner institutions in Ukraine and Poland to establish an energy and climate think tank in the capital, Kiev. The aim is to provide independent and evidence-based advice on rebuilding a sustainable energy system in Ukraine. After all, the implementation of energy and climate legislation is a prerequisite for Ukraine's accession to the EU. The project started on 1 June 2023 and will run for four years.
  • Spintronics at BESSY II: Domain walls in magnetic nanowires
    Science Highlight
    02.06.2023
    Spintronics at BESSY II: Domain walls in magnetic nanowires
    Magnetic domains walls are known to be a source of electrical resistance due to the difficulty for transport electron spins to follow their magnetic texture. This phenomenon holds potential for utilization in spintronic devices, where the electrical resistance can vary based on the presence or absence of a domain wall. A particularly intriguing class of materials are half metals such as La2/3Sr1/3MnO3 (LSMO) which present full spin polarization, allowing their exploitation in spintronic devices. Still the resistance of a single domain wall in half metals remained unknown. Now a team from Spain, France and Germany has generated a single domain wall on a LSMO nanowire and measured resistance changes 20 times larger than for a normal ferromagnet such as Cobalt.
  • Fractons as information storage: Not yet quite tangible, but close
    Science Highlight
    26.05.2023
    Fractons as information storage: Not yet quite tangible, but close
    A new quasiparticle with interesting properties has appeared in solid-state physics - but so far only in the theoretical modelling of solids with certain magnetic properties. An international team from HZB and Freie Universität Berlin has now shown that, contrary to expectations, quantum fluctuations do not make the quasiparticle appear more clearly, but rather blur its signature.