Spintronics: A new tool at BESSY II for chirality investigations

The picture reflects the main effect measured with a newly developed instrument ALICE II at BESSY II: A circular polarised soft-X-ray beam scatters off a crystal that exhibits a helical or conical magnetic order. This leads to two scattered beams of different intensity. The difference in intensity of these scattered beams is a measure of the chirality of the equidistant magnetic helices.

The picture reflects the main effect measured with a newly developed instrument ALICE II at BESSY II: A circular polarised soft-X-ray beam scatters off a crystal that exhibits a helical or conical magnetic order. This leads to two scattered beams of different intensity. The difference in intensity of these scattered beams is a measure of the chirality of the equidistant magnetic helices. © F. Radu/HZB

Information on complex magnetic structures is crucial to understand and develop spintronic materials. Now, a new instrument named ALICE II is available at BESSY II. It allows magnetic X-ray scattering in reciprocal space using a new large area detector. A team at HZB and Technical University Munich has demonstrated the performance of ALICE II by analysing helical and conical magnetic states of an archetypal single crystal skyrmion host. ALICE II is now available for guest users at BESSY II.

The new instrument was conceived and constructed by HZB physicist Dr. Florin Radu and the technical design department at HZB in close cooperation with Prof. Christian Back from the Technical University Munich and his technical support. It is now available for guest users at BESSY II as well.

“ALICE II has an unique capability, namely to allow for magnetic X-ray scattering in reciprocal space using a new large area detector, and this at up to the highest allowed reflected angles”, Radu explains. To demonstrate the performance of the new instrument, the scientists examined a polished sample of Cu2OSeO3.

Mott-Insulator examined

Cu2OSeO3 is a Mott insulator with a cubic crystal structure which lacks inversion symmetry. This results in the development of helical magnetic ordering: magnetic spins rotating clock- or anticlock- wise with respect to the propagation direction. The magnetic ion is Copper (Cu) and the chirality of the magnetic texture cannot be reversed by external stimuli. The sample quality, which is of key importance, was assured by Dr. Aisha Aqueel.

Novel way to investigate magnetic textures

The scientists could observe helical and conical magnetic modulations as satellite reflections around the specular peak via x-ray magnetic scattering with circularly polarized x-rays. “What’s more: the chirality information of the underlying spin textures is encoded as its dichroic intensity”, Radu points out. These results pave a novel way to investigate chiral and polar magnetic textures with ultimate spatial resolution and at the very short time scales typical to synchrotron X-ray experiments, and expand a range of materials for the topological spintronics via fast screening of candidate materials.

Note: The project was funded by BMBF and HZB

arö


You might also be interested in

  • Unconventional piezoelectricity in ferroelectric hafnia
    Science Highlight
    26.02.2024
    Unconventional piezoelectricity in ferroelectric hafnia
    Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometre range. While their ferroelectric behaviour is extensively studied, results on piezoelectric effects have so far remained mysterious. A new study now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another ground-breaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.
  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.