LEAPS research infrastructures to tackle societal crises
More than 180 scientists, research facilities directors, policymakers and industry representatives travelled to Paul Scherrer Institute from across Europe to attend the LEAPS Plenary Meeting. © Markus Fischer/PSI
Against a backdrop of the energy crisis, scientists and policymakers convened at Paul Scherrer Institute PSI in Switzerland and set out a vision for European accelerator based photon sources to address current and future societal challenges together.
“LEAPS facilities find themselves in a unique position of simultaneously needing to adapt as heavy energy users whilst being an integral part of the solution.” So said Leonid Rivkin from the Paul Scherrer Institute PSI, Switzerland, Chair of the League of European Accelerator-based Photon Sources (LEAPS). Speaking at the 5th LEAPS plenary meeting, Rivkin commented that planned facility upgrades to leading European research infrastructures will help favourably shift the balance, providing more X-rays for more science with less energy consumption.
The current energy crisis was an important theme during the 5th LEAPS plenary meeting, held at the Paul Scherrer Institute from the 26th – 28th October 2022. The meeting welcomed more than 180 scientists, policy makers and industry representatives from across Europe. This included directors of the 19 member European accelerator-based photon facilities – i.e. synchrotron light sources and free electron lasers (FELs) - as well as high-level representatives of the European Commission.
read more >
PSI
-
Perovskite solar cells from the slot die coater - a step towards industrial production
Solar cells made from metal halide perovskites achieve high efficiencies and their production from liquid inks requires only a small amount of energy. A team led by Prof. Dr. Eva Unger at Helmholtz-Zentrum Berlin is investigating the production process. At the X-ray source BESSY II, the group has analyzed the optimal composition of precursor inks for the production of high-quality FAPbI3 perovskite thin films by slot-die coating. The solar cells produced with these inks were tested under real life conditions in the field for a year and scaled up to mini-module size.
-
Superstore MXene: New proton hydration structure determined
MXenes are able to store large amounts of electrical energy like batteries and to charge and discharge rather quickly like a supercapacitor. They combine both talents and thus are a very interesting class of materials for energy storage. The material is structured like a kind of puff pastry, with the MXene layers separated by thin water films. A team at HZB has now investigated how protons migrate in the water films confined between the layers of the material and enable charge transport. Their results have been published in the renowned journal Nature Communications and may accelerate the optimisation of these kinds of energy storage materials.
-
Electrocatalysis under the atomic force microscope
A further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometre-fine structures as well as the electric current and the frictional force at solid-liquid interfaces. A team from the Helmholtz-Zentrum Berlin (HZB) and the Fritz Haber Institute (FHI) of the Max Planck Society has succeeded in analysing electrocatalytically active materials and gaining insights that will help optimise catalysts. The method is also potentially suitable for studying processes on battery electrodes, in photocatalysis or on active biomaterials.