Neue Monochromatoroptiken für den „tender“ Röntgenbereich

Schematische Darstellung des neuartigen Monochromatorkonzepts an der U41-PGM1-Beamline bei BESSY-II basierend auf einem Multilayer beschichteten Sägezahn-Gitter und Planspiegel zur Verbesserung des Photonenflusses im „tender“ Röntgenphotonenenergiebereich (1,5 – 5,0 keV). Der Ausschnitt zeigt ein TEM-Bild des Querschnitts der Cr/C-Multilayer-Gitterstrukturen. Zur besseren Visualisierung der Gitterperiode wurde das Bild horizontal 10-fach komprimiert.

Schematische Darstellung des neuartigen Monochromatorkonzepts an der U41-PGM1-Beamline bei BESSY-II basierend auf einem Multilayer beschichteten Sägezahn-Gitter und Planspiegel zur Verbesserung des Photonenflusses im „tender“ Röntgenphotonenenergiebereich (1,5 – 5,0 keV). Der Ausschnitt zeigt ein TEM-Bild des Querschnitts der Cr/C-Multilayer-Gitterstrukturen. Zur besseren Visualisierung der Gitterperiode wurde das Bild horizontal 10-fach komprimiert. © HZB / Small Methods 2022

Röntgenmikroskopische Aufnahmen einer 400 nm dicken Lamelle, die aus einem modernen Mikrochip extrahiert wurde. Die Einzelbilder stammen aus einer mikrospektroskopischen Energieserie aufgenommen an der Si-K-Absorptionskante. Die NEXAFS-Spektren wurden aus der Energieserie für SiCN- und OSG-Materialien extrahiert. Die entsprechenden Energiepeaks ergeben sich auf Grund der dominierenden Si-C-Bindungen für SiCN und der dominierenden Si-O-Bindungen für OSG-Dielektrika.

Röntgenmikroskopische Aufnahmen einer 400 nm dicken Lamelle, die aus einem modernen Mikrochip extrahiert wurde. Die Einzelbilder stammen aus einer mikrospektroskopischen Energieserie aufgenommen an der Si-K-Absorptionskante. Die NEXAFS-Spektren wurden aus der Energieserie für SiCN- und OSG-Materialien extrahiert. Die entsprechenden Energiepeaks ergeben sich auf Grund der dominierenden Si-C-Bindungen für SiCN und der dominierenden Si-O-Bindungen für OSG-Dielektrika. © HZB / Small Methods 2022

Bislang war es äußerst langwierig, Messungen mit hoher Empfindlichkeit und hoher Ortsauflösung mittels Röntgenlicht im „tender“ Energiebereich von 1,5 - 5,0 keV durchzuführen. Dabei eignet sich genau dieses Röntgenlicht ideal, um Energiematerialien für Batterien oder Katalysatoren, aber auch biologische Systeme zu untersuchen. Dieses Problem hat nun ein Team aus dem HZB gelöst: Die neu entwickelten Monochromatoroptiken erhöhen den Photonenfluss im „tender“ Energiebereich um den Faktor 100 und ermöglichen so hochpräzise Messungen nanostrukturierter Systeme. An katalytisch aktiven Nanopartikeln und Mikrochips wurde die Methode erstmals erfolgreich getestet.

Für die Umstellung auf eine klimaneutrale Energieversorgung werden vielfältigste Materialien für Umwandlungsprozesse benötigt, zum Beispiel katalytisch aktive Materialien und neuartige Elektroden für den Einsatz in Batterien. Viele dieser Materialien besitzen Nanostrukturen, die ihre Funktionalität steigern. Bei der Untersuchung dieser Proben werden spektroskopische Messungen zum Nachweis der chemischen Eigenschaften idealerweise mit Röntgenbildgebung mit hoher Ortsauflösung im Nanobereich kombiniert. Da Schlüsselelemente in diesen Materialien, wie Molybdän, Silizium oder Schwefel, jedoch vorwiegend auf Röntgenstrahlung im sogenannten „tender“ Photonenenergiebereich reagieren, gab es bislang ein großes Problem.

Denn in diesem mittleren „tender“ Energiebereich zwischen weicher und harter Röntgenstrahlung liefern herkömmliche Röntgenoptiken aus Plangitter- oder Kristallmonochromatoren nur sehr geringe Effizienzen. Ein Team aus dem HZB hat dieses Problem nun gelöst: „Wir haben neuartige Monochromatoroptiken entwickelt. Diese Optiken basieren auf einem angepassten, Multilayer beschichteten Sägezahn-Gitter mit einem Planspiegel“, sagt Frank Siewert von der HZB-Abteilung Optik und Strahlrohre. Das neue Monochromatorkonzept steigert den Photonenfluss im „tender“ Röntgenbereich um den Faktor 100 und ermöglicht damit erstmals hochempfindliche spektromikroskopische Messungen mit hohen Auflösungen. „Innerhalb kurzer Zeit konnten wir Messdaten aus NEXAFS-Spektromikroskopiestudien im Nanobereich erhalten, dies haben wir an katalytisch aktiven Nanopartikeln und modernen Mikrochipstrukturen nachgewiesen“ sagt Stephan Werner, Erstautor der Publikation. „Die neue Entwicklung ermöglicht jetzt Experimente, die sonst monatelange Datenerfassung erfordert hätten“, betont Werner.

„Dieser Monochromator wird die Methode der Wahl für die Bildgebung in diesem Röntgenbereich werden, nicht nur an Synchrotronen weltweit, sondern auch an Freien-Elektronen-Lasern und Laborquellen“, sagt Gerd Schneider, der die Abteilung Röntgenmikroskopie am HZB leitet. Er erwartet enorme Auswirkungen auf viele Bereiche der Materialforschung: Studien im „tender“ Röntgenbereich könnten die Entwicklung von Energiematerialien deutlich voranbringen und damit einen Beitrag zu klimaneutralen Lösungen für die Strom- und Energieversorgung leisten.

arö


Das könnte Sie auch interessieren

  • HZB-Forscher Robert Seidel erhält ERC-Consolidator Grant für WATER-X
    Nachricht
    04.03.2024
    HZB-Forscher Robert Seidel erhält ERC-Consolidator Grant für WATER-X
    Der Physiker Dr. Robert Seidel hat einen Consolidator Grant des European Research Council (ERC) eingeworben. In den kommenden fünf Jahren erhält er damit Fördermittel von insgesamt zwei Millionen Euro für sein Forschungsvorhaben WATER-X. Seidel will mit modernsten Röntgenmethoden an BESSY II Nanopartikel in wässriger Lösung untersuchen, die als Katalysatoren bei der photokatalytischen Produktion von „grünem“ Wasserstoff eingesetzt werden.
  • Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Science Highlight
    26.02.2024
    Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Hafniumoxid-Dünnschichten sind eine faszinierende Klasse von Materialien mit robusten ferroelektrischen Eigenschaften im Nanometerbereich. Während das ferroelektrische Verhalten ausgiebig untersucht wurde, blieben die Ergebnisse zu den piezoelektrischen Effekten bisher rätselhaft. Eine neue Studie zeigt nun, dass die Piezoelektrizität in ferroelektrischen Hf0,5Zr0,5O2-Dünnschichten durch zyklische elektrische Felder dynamisch verändert werden kann. Ein weiteres bahnbrechendes Ergebnis ist die Möglichkeit einer intrinsischen nicht-piezoelektrischen ferroelektrischen Verbindung. Diese unkonventionellen Eigenschaften von Hafnia bieten neue Optionen für den Einsatz in der Mikroelektronik und Informationstechnologie.
  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart.