New monochromator optics for tender X-rays

Schematic drawing of the novel monochromator concept at the U41-PGM1 beamline at BESSY-II based on a multilayer coated blazed plane grating and mirror to improve the photon flux in the tender X-ray photon energy range (1.5 – 5.0 keV). The inset shows a TEM image of the cross-section of the Cr/C multilayer blazed grating structures. For better visualization of the grating period, the image was horizontally compressed 10 fold.

Schematic drawing of the novel monochromator concept at the U41-PGM1 beamline at BESSY-II based on a multilayer coated blazed plane grating and mirror to improve the photon flux in the tender X-ray photon energy range (1.5 – 5.0 keV). The inset shows a TEM image of the cross-section of the Cr/C multilayer blazed grating structures. For better visualization of the grating period, the image was horizontally compressed 10 fold. © HZB / Small Methods 2022

X-ray microscopy images of a 400 nm thick lamella cut out of a modern microchip device. The individual images were taken from a microspectrocopic energy series at the Si-K absorption edge. The NEXAFS spectra were extracted from the acquired energy series for SiCN and OSG materials. The corresponding energy peaks are related to the dominating Si-C bonds for SiCN and the dominating Si-O bonds for OSG dielectrics.</p> <p>&nbsp;

X-ray microscopy images of a 400 nm thick lamella cut out of a modern microchip device. The individual images were taken from a microspectrocopic energy series at the Si-K absorption edge. The NEXAFS spectra were extracted from the acquired energy series for SiCN and OSG materials. The corresponding energy peaks are related to the dominating Si-C bonds for SiCN and the dominating Si-O bonds for OSG dielectrics.

  © HZB / Small Methods 2022

Until now, it has been extremely tedious to perform measurements with high sensitivity and high spatial resolution using X-ray light in the tender energy range of 1.5 - 5.0 keV. Yet this X-ray light is ideal for investigating energy materials such as batteries or catalysts, but also biological systems. A team from HZB has now solved this problem: The newly developed monochromator optics increase the photon flux in the tender energy range by a factor of 100 and thus enable highly precise measurements of nanostructured systems. The method was successfully tested for the first time on catalytically active nanoparticles and microchips.

 

A climate-neutral energy supply requires a wide variety of materials for energy conversion processes, for example catalytically active materials and new electrodes for batteries. Many of these materials have nanostructures that increase their functionality. When investigating these samples, spectroscopic measurements to detect the chemical properties are ideally combined with X-ray imaging with high spatial resolution at the nanoscale. However, since key elements in these materials, such as molybdenum, silicon or sulphur, react predominantly to X-rays in the so-called tender photon energy range, there has been a major problem until now.

This is because in this "tender" energy range between soft and hard X-rays, conventional X-ray optics from plane grating or crystal monochromators deliver only very low efficiencies. A team from HZB has now solved this problem: "We have developed novel monochromator optics. These optics are based on an adapted, multilayer-coated sawtooth grating with a plane mirror," says Frank Siewert from the HZB Optics and Beamlines Department. The new monochromator concept increases the photon flux in the tender X-ray range by a factor of 100 and thus enables highly sensitive spectromicroscopic measurements with high resolutions for the first time. "Within a short time we were able to collect data from NEXAFS spectromicroscopy on the nanoscale. We have demonstrated this on catalytically active nanoparticles and modern microchip structures," says Stephan Werner, first author of the publication. "The new development now enables experiments that would otherwise have required months of data collection," Werner emphasises.

"This monochromator will become the method of choice for imaging in this X-ray energy range, not only at synchrotrons worldwide, but also at free-electron lasers and laboratory sources," says Gerd Schneider, who heads the X-ray Microscopy Department at HZB. He expects enormous effects on many areas of materials research: Studies in the tender X-ray range could significantly advance the development of energy materials and thus contribute to climate-neutral solutions for electricity and energy supply.

arö


You might also be interested in

  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.

  • From waste to value: The right electrolytes can enhance glycerol oxidation
    Science Highlight
    01.07.2024
    From waste to value: The right electrolytes can enhance glycerol oxidation
    When biomass is converted into biodiesel, huge amounts of glycerol are produced as a by-product. So far, however, this by-product has been little utilised, even though it could be processed into more valuable chemicals through oxidation in photoelectrochemical reactors. The reason for this: low efficiency and selectivity. A team led by Dr Marco Favaro from the Institute for Solar Fuels at HZB has now investigated the influence of electrolytes on the efficiency of the glycerol oxidation reaction. The results can help to develop more efficient and environmentally friendly production processes.