New monochromator optics for tender X-rays

Schematic drawing of the novel monochromator concept at the U41-PGM1 beamline at BESSY-II based on a multilayer coated blazed plane grating and mirror to improve the photon flux in the tender X-ray photon energy range (1.5 – 5.0 keV). The inset shows a TEM image of the cross-section of the Cr/C multilayer blazed grating structures. For better visualization of the grating period, the image was horizontally compressed 10 fold.

Schematic drawing of the novel monochromator concept at the U41-PGM1 beamline at BESSY-II based on a multilayer coated blazed plane grating and mirror to improve the photon flux in the tender X-ray photon energy range (1.5 – 5.0 keV). The inset shows a TEM image of the cross-section of the Cr/C multilayer blazed grating structures. For better visualization of the grating period, the image was horizontally compressed 10 fold. © HZB / Small Methods 2022

X-ray microscopy images of a 400 nm thick lamella cut out of a modern microchip device. The individual images were taken from a microspectrocopic energy series at the Si-K absorption edge. The NEXAFS spectra were extracted from the acquired energy series for SiCN and OSG materials. The corresponding energy peaks are related to the dominating Si-C bonds for SiCN and the dominating Si-O bonds for OSG dielectrics.</p> <p>&nbsp;

X-ray microscopy images of a 400 nm thick lamella cut out of a modern microchip device. The individual images were taken from a microspectrocopic energy series at the Si-K absorption edge. The NEXAFS spectra were extracted from the acquired energy series for SiCN and OSG materials. The corresponding energy peaks are related to the dominating Si-C bonds for SiCN and the dominating Si-O bonds for OSG dielectrics.

  © HZB / Small Methods 2022

Until now, it has been extremely tedious to perform measurements with high sensitivity and high spatial resolution using X-ray light in the tender energy range of 1.5 - 5.0 keV. Yet this X-ray light is ideal for investigating energy materials such as batteries or catalysts, but also biological systems. A team from HZB has now solved this problem: The newly developed monochromator optics increase the photon flux in the tender energy range by a factor of 100 and thus enable highly precise measurements of nanostructured systems. The method was successfully tested for the first time on catalytically active nanoparticles and microchips.

 

A climate-neutral energy supply requires a wide variety of materials for energy conversion processes, for example catalytically active materials and new electrodes for batteries. Many of these materials have nanostructures that increase their functionality. When investigating these samples, spectroscopic measurements to detect the chemical properties are ideally combined with X-ray imaging with high spatial resolution at the nanoscale. However, since key elements in these materials, such as molybdenum, silicon or sulphur, react predominantly to X-rays in the so-called tender photon energy range, there has been a major problem until now.

This is because in this "tender" energy range between soft and hard X-rays, conventional X-ray optics from plane grating or crystal monochromators deliver only very low efficiencies. A team from HZB has now solved this problem: "We have developed novel monochromator optics. These optics are based on an adapted, multilayer-coated sawtooth grating with a plane mirror," says Frank Siewert from the HZB Optics and Beamlines Department. The new monochromator concept increases the photon flux in the tender X-ray range by a factor of 100 and thus enables highly sensitive spectromicroscopic measurements with high resolutions for the first time. "Within a short time we were able to collect data from NEXAFS spectromicroscopy on the nanoscale. We have demonstrated this on catalytically active nanoparticles and modern microchip structures," says Stephan Werner, first author of the publication. "The new development now enables experiments that would otherwise have required months of data collection," Werner emphasises.

"This monochromator will become the method of choice for imaging in this X-ray energy range, not only at synchrotrons worldwide, but also at free-electron lasers and laboratory sources," says Gerd Schneider, who heads the X-ray Microscopy Department at HZB. He expects enormous effects on many areas of materials research: Studies in the tender X-ray range could significantly advance the development of energy materials and thus contribute to climate-neutral solutions for electricity and energy supply.

arö

You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    27.01.2023
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • HZB physicist appointed to Gangneung-Wonju National University, South Korea
    News
    25.01.2023
    HZB physicist appointed to Gangneung-Wonju National University, South Korea
    Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.
  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.