Tomography shows high potential of copper sulphide solid-state batteries

3D reconstruction of the formation of a copper crystallite in a copper sulfide particle (CuS) during the discharge of a lithium CuS solid-state battery. The volume expansion can lead to the formation of cracks (blue).

3D reconstruction of the formation of a copper crystallite in a copper sulfide particle (CuS) during the discharge of a lithium CuS solid-state battery. The volume expansion can lead to the formation of cracks (blue). © K. Dong / HZB

Solid-state batteries enable even higher energy densities than lithium-ion batteries with high safety. A team led by Prof. Philipp Adelhelm and Dr. Ingo Manke succeeded in observing a solid-state battery during charging and discharging and creating high-resolution 3D images. This showed that cracking can be effectively reduced through higher pressure.

Solid-state batteries (SSBs) are currently regarded as a promising battery technology of the future. Compared to the current lithium-ion batteries, which are used in mobile phones, laptops and electric vehicles, SSBs could achieve even higher energy densities and better safety. In addition to research institutes, all major automotive companies are therefore also researching this technology.  The main feature of the technology is that the highly flammable liquid electrolytes of lithium-ion batteries are replaced by a solid. The entire battery is therefore consists of only "solid materials", hence the name solid-state battery. In order to produce such a battery, different materials (anode, cathode and electrolyte) must be pressed together under high pressure.

Researchers from the Helmholtz-Zentrum Berlin and Hereon, Humboldt-Universität zu Berlin and the Federal Institute for Materials Research and Testing have now succeeded in observing the processes within such a solid-state battery during charging and discharging. The team led by Prof. Philipp Adelhelm and Dr. Ingo Manke investigated the behavior of copper sulfide, a naturally occurring mineral, as a cathode in a solid-state battery. Lithium was used as anode. A special feature of the battery is that large copper crystallites form during discharge. The formation of large crystallites enables a detailed investigation of the reaction by means of X-ray tomography. Thus, the (dis)charge reaction could be traced in 3D and for the first time the movement of the cathode particles within the battery could be tracked. In addition, it was shown that cracking can be effectively reduced by higher pressure.  "For the complex measurements, we had to make some compromises and carry out many reference experiments," explains Dr. Zhenggang Zhang and Dr. Kang Dong, the joint first authors of the publication. "However, the results provide detailed insights into the inner workings of a solid-state battery and show how its properties can be improved."

Note:

The project was funded by the German Federal Ministry of Education and Research (NASEBER and KAROFEST projects) and the China Scholarship Council. At Helmholtz-Zentrum Berlin, research into solid-state batteries using tomography will soon be further expanded. For example, the Federal Ministry of Education and Research is funding the construction of a new tomography laboratory (TomoFestBattLab) with 1.86 million euros.

P. Adelhelm/I. Manke


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.