KI-gestützte Software schafft Durchblick bei komplexen Daten

Experimentelle Daten sind oft nicht nur hochdimensional, sondern auch verrauscht und voller Artefakte. Das erschwert es, die Daten zu interpretieren. Nun hat ein Team am HZB eine Software konzipiert, die mit Hilfe von selbstlernenden neuronalen Netzwerken die Daten smart komprimiert und im nächsten Schritt eine rauscharme Version rekonstruieren kann. Das ermöglicht Einblicke in Zusammenhänge, die sonst nicht erkennbar wären. Die Software wurde jetzt erfolgreich für die Photonendiagnostik beim Freien Elektronenlaser FLASH bei DESY eingesetzt. Sie eignet sich jedoch für ganz unterschiedliche Anwendungen in der Wissenschaft.

Viel ist nicht immer besser, sondern manchmal auch ein Problem. Bei hochkomplexen Daten, die aufgrund ihrer zahlreichen Parameter sehr viele Dimensionen besitzen, sind Zusammenhänge oft nicht mehr erkennbar. Zumal experimentell gewonnene Daten durch Einflüsse, die sich nicht kontrollieren lassen, zusätzlich gestört und verrauscht sind.

Daten für Menschen interpretierbar machen

Nun kann eine neue Software helfen, die auf Methoden der Künstlichen Intelligenz basiert: Es handelt sich um eine besondere Klasse von neuronalen Netzen (NN), die Fachleute mit dem Begriff „disentangled variational autoencoder network (β-VAE)“ bezeichnen. Vereinfacht gesagt sorgt das erste NN für die Komprimierung der Daten, während das zweite NN im Anschluss die Daten wieder rekonstruiert. „Dabei sind die beiden NN so trainiert, dass die komprimierte Form für den Menschen interpretierbar wird“, erklärt Dr. Gregor Hartmann. Der Physiker und Datenwissenschaftler betreut am HZB das Joint Lab zu Methoden der Künstlichen Intelligenz, das vom HZB gemeinsam mit der Universität Kassel betrieben wird.

Die β-VAEs extrahieren ohne Vorkenntnisse das Kernprinzip

Google Deepmind hatte bereits in 2017 vorgeschlagen, β-VAEs zu nutzen. Viele Expertinnen und Experten gingen davon aus, dass die Anwendung in der echten Welt herausfordernd werden wird, da gerade nicht-lineare Komponenten schwer entwirrbar sind. “Nach mehreren Jahren, in denen wir lernen mussten, wie die NN lernen, funktionierte es dann endlich”, sagt Hartmann. β-VAEs sind in der Lage, ein zugrunde liegende Kernprinzip ohne Vorkenntnisse aus Daten zu extrahieren.

Photonenenergie von FLASH bestimmt

In der nun veröffentlichten Studie hat die Gruppe die Software genutzt, um die Photonenenergie von FLASH aus Einzelphotoelektronenspektren zu bestimmen. „Es ist uns gelungen, aus verrauschten Elektronflugzeitdaten diese Informationen zu extrahieren, und zwar deutlich besser als mit herkömmlichen Analysemethoden“, sagt Hartmann. Auch Daten mit detektorspezifischen Artefakten können so bereinigt werden.

Werkzeug für die Forschung

„Die Methode ist richtig gut, wenn es um beeinträchtigte Daten geht“, betont Hartmann. Das Programm ist sogar in der Lage, winzige Signale, die in den Rohdaten nicht erkennbar waren, zu rekonstruieren. Solche Netzwerke können dazu beitragen, unerwartete physikalische Effekte oder Korrelationen in großen experimentellen Datensätzen aufzudecken. „Die KI-basierte intelligente Datenkompression ist ein sehr leistungsstarkes Werkzeug, nicht nur in der Photonenforschung“, sagt Hartmann.

Jetzt "Plug and Play"

Insgesamt haben Hartmann und sein Team drei Jahre lang an der Entwicklung der Software gearbeitet. „Aber nun ist, zumindest der Einstieg in neue Projekte plug and play. Wir hoffen, dass bald viele Kolleginnen und Kollegen mit ihren Daten kommen und wir sie unterstützen können.“

arö


Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.
  • Neue Doppelspitze für BESSY II
    Nachricht
    13.06.2024
    Neue Doppelspitze für BESSY II
    Andreas Jankowiak als neuer Technischer Direktor und Facility-Sprecherin Antje Vollmer teilen sich Führungsaufgaben.

    Mit Beschluss der Geschäftsführung ist Prof. Andreas Jankowiak zum 1. Juni 2024 zum Technischen Direktor von BESSY II mit einer Amtszeit von drei Jahren ernannt worden. Antje Vollmer wird zum 1. Juli 2024 ihre zweite Amtszeit als BESSY II Facility-Sprecherin starten. Gemeinsam bilden sie das neue Führungsduo, um die wissenschaftliche und technische Weiterentwicklung der Röntgenquelle BESSY II im Auftrag der Geschäftsführung zu koordinieren.

  • Chilenischer Präsident zu Besuch am Helmholtz-Zentrum Berlin
    Nachricht
    12.06.2024
    Chilenischer Präsident zu Besuch am Helmholtz-Zentrum Berlin
    Mit einer 50-köpfigen Delegation besuchte der chilenische Staatspräsident Gabriel Boric Font am 11. Juni das HZB. Zu den großen Momenten des Abends zählten die Unterzeichnung eines Memorandum of Understanding zwischen der chilenischen „Gesellschaft für Produktionsförderung“ CORFO und dem HZB sowie der Besuch der Röntgenquelle BESSY II.