HZB physicist appointed to Gangneung-Wonju National University, South Korea

Dr Ji-Gwang Hwang at the new optical beam diagnostics platform at BESSY II. He will now take up a professorship at Gangneung-Wonju National University in South Korea.

Dr Ji-Gwang Hwang at the new optical beam diagnostics platform at BESSY II. He will now take up a professorship at Gangneung-Wonju National University in South Korea. © HZB

Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.

“We are very sad that he is leaving us, he is a great physicist and team mate and has made many important and valuable contributions to our research! But of course, we are also very happy, that he got this offer from a renowned university,”says Andreas Jankowiak, Director of the HZB-Institute for Accelerator Operation, Development and Technology.

Ji-Gwang Hwang has worked on the optical and RF diagnostics of the electron beam in HZB´s storage rings  and bERLinPro and has analysed beam dynamics in BESSY II and a possible short-pulse option for BESSY III. Recently, together with Prof. Gregor Schiwietz, he established a new platform for optical beam diagnostics at BESSY II, which is now available for optimisation of beam operation and future research. Hwang completed his PhD in Accelerator Physics at the Kyungpook National University in Summer 2014 with a thesis on “Beam dynamics in a high brightness injector for a superconducting Energy Recovery Linac”. His first postdoc took the young accelerator physicist to the Korea Institute of Radiological & Medical Sciences, where tumour patients can be treated with accelerated carbon ions. “The position at HZB was perfect to continue my career in science,” he says.

During his time at HZB, Hwang has contributed to more than 10 peer-reviewed publications and obtained a significant patent. "One of the reasons for moving to Korea is my newborn son," says the physicist. "I didn't want to deprive my mother of her precious time with her only grandson." South Korea also invests heavily in research, with almost 5 per cent of its gross domestic product (GDP) spent on research and development*.

As a physics professor, Hwang now also has new responsibilities, including 12 hours of lectures a week and supervising of students. A task he is happy to take on. "It will take a lot of time at first. But in the next few years I will also set up my own laboratory and of course continue to collaborate with HZB," says the physicist. “We will certainly miss Ji-Gwang in our team,”adds group leader Markus Ries.

* https://www.statista.com/statistics/1326558/south-korea-randd-spending-as-share-of-gdp/

arö

  • Copy link

You might also be interested in

  • HZB-magazine lichtblick - the new issue is out!
    News
    31.01.2025
    HZB-magazine lichtblick - the new issue is out!
    In the cover story we introduce Astrid Brandt. She is Head of User Coordination at Helmholtz-Zentrum Berlin. She and her team keep constant track of applications, measurement times and publications of the 1000 guest researchers who come to BESSY II each year.

    She has always been fascinated by science. But she has also never let go of her other passion, which is music.

  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.