Maria Skłodowska Curie Postdoctoral Fellowship for Artem Musiienko

Dr. Artem Musiienko has earned has earned a prestigious Maria Skłodowska Curie Postdoctoral Fellowship to improve lead free perovskite solar cells.

Dr. Artem Musiienko has earned has earned a prestigious Maria Skłodowska Curie Postdoctoral Fellowship to improve lead free perovskite solar cells. © F. Krawatzek /HZB

Dr. Artem Musiienko has earned a prestigious Maria Skłodowska Curie Postdoctoral Fellowship for his research project HyPerGreen. In the group of Prof. Antonio Abate, HZB, Musiienko will explore and improve lead-free perovskite solar cells with the goal to increase their efficiency to more than 20 %.  

Musiienko completed his doctorate in 2018 at Charles University in Prague on a topic related to semiconductor physics and subsequently worked there as a research assistant. In 2020, he moved to the HZB Institute for Silicon Photovoltaics, where he investigated defects in halide perovskites, among other things. He has contributed significantly to the enormous increases in the efficiency of halide perovskite solar cells, for which the HZB is now internationally renowned.

"However, those highly efficient halide perovskites contain small amounts of lead, a toxic heavy metal that must not be released into the environment," says Musiienko. But lead can be replaced with tin, which has been shown to be non-bioavailable and therefore harmless. So far, however, the efficiency and stability of tin perovskite solar cells are much lower in comparison. Musiienko now plans in his HyPerGreen project to significantly improve tin perovskite solar cells and to explore the mechanisms that limit charge transport in the bulk and at the interface of these materials. Musiienko will use the novel Photo-Hall method, he has recently developed at HZB. “At the moment, together with HZB, we patent this method”, he adds. The method is based on a combination of magnetic field and light and can be used to explore charge transport parameters and limiting factors of the material, which were unreachable otherwise. His goal is ambitious: In his projects he is aiming for efficiencies of over 20 %, a big step forward from the current record of 14.6 % (1).

(1): Efficiency record for tin perovskite solar cells: Jiang, X. et al. J. Am. Chem. Soc. 143 (29), 10970-10976 (2021))

 

arö

  • Copy link

You might also be interested in

  • News
    03.04.2025
    103 schoolgirls on Girls'Day at HZB

    On April 3, 2025, the annual Girls' Day took place, giving schoolgirls an insight into various careers in science and technology. We welcomed a total of 103 schoolgirls at our Adlershof and Wannsee sites and offered them a day full of exciting experiments - more participants than ever before!

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.